
Physically-based Animation of Humanoid Swimming

Shahzad Malik Nigel Morris Paul Yang
Department of Computer Science

University of Toronto
{ smalik | nmorris | paulyang } @ dgp.toronto.edu

Abstract
In this paper, we describe a dynamic control algorithm that
allows a humanoid character to swim through a fluid. The
swimming is physically-based, whereby the character ap-
plies simulated muscle forces in order to drive the body
through the motions of a breaststroke. The interaction be-
tween the moving body parts and a fluid dynamics system
results in drag forces that cause the swimmer’s body to be
thrust forward. Directional control of the swimmer is
achieved by applying various perturbations to the original
stroke based on a desired trajectory. We analyze the re-
sults qualitatively by comparing our resulting animations
against video footage of real swimmers.

1. Introduction
It has been said that the Greek philosopher Plato de-

clared men who didn't know how to swim as uneducated.
Today, virtual human characters can perform a slew of dy-
namic maneuvers ranging from walking and running to
dancing and acrobatics, but little effort has been focused on
virtual swimming. Thus, it is time to educate our virtual
friends.

We describe a dynamic control algorithm that allows a
rigid-body model of a human to swim through a fluid. As a
start, we have chosen to animate the breaststroke, but our
system is general enough to handle any type of swimming
motion. The rigid body model is animated by simulating
muscle forces via torques applied at the joints. State ma-
chines are used to define the behaviour of the rigid body
model, and control laws define the amount of muscle
strength (torque) to apply. The interaction between the
rigid bodies and a simple fluid dynamics model provide the
forces that are used to thrust the character forward through
the liquid. To use our model, a user or animator is given
access to two sets of parameters:
� Control parameters: these include such things as target

location and orientation in order to guide the swimmer.
� Body and environment parameters: these include such

things as masses, muscle strength, and dimensions for
the various rigid body parts, and fluid parameters (cur-
rently only viscosity is defined).

The rest of this paper is organized as follows. The next
section discusses existing work that is relevant to physics-
based swimming animation. Section 3 then outlines our
swimming animation system. Section 4 then describes the

muscle-model and directional control used to put the
swimmer in motion through the fluid, followed by Section 5
which describes the fluid dynamics system. Section 6 then
describes our results, and Sections 7 and 8 summarize the
paper and present avenues for future research.

2. Related Work
 In the past few years, many dynamic control algorithms
for animating physics-based characters have been proposed
in the literature. However, none has directly addressed the
issue of humanoid swimming in fluids. Interesting algo-
rithms for physics-based running, cycling, and vaulting
were described in [6], but in these cases the physical envi-
ronment in which the actions were taking place was consid-
ered static (unlike fluid). Similarly, independent animation
algorithms for visualizing fluid flows have been proposed
in [14, 17], but none of these take into account the continu-
ous feedback between the fluid and moving bodies, as
would be required for a swimmer.

Some motivating work that takes the swimmer-fluid
feedback into account was described in [16]. Here, a vir-
tual marine world with fish that hunt, flee, mate, and wan-
der was described. The fish were modeled as spring-mass
systems with sinusoidal patterns actuating the springs and
propelling the fish through the water. Their layered archi-
tecture consists of an intention generator that creates goal-
directed behavior, a motor system that implements higher
level motion primitives such as "swim forward" or "turn
right," and motion controllers that translate low level con-
trol parameters such as speed and direction into muscle
actions.

In a similar fashion, a physically-based system for ani-
mating birds is described in [10]. This system models the
motion of wings as a function of time, and aerodynamic
principles are used to vary geometric parameters and aero-
foil sections of the wing to capture realistic bird flight.
Targeting is achieved by controlling the pitch of the bird’s
body around its centre of gravity.

Another interesting work regarding swimming bodies is
described in [12]. Here, virtual creatures are “evolved” to
swim, walk, jump, and follow in a virtual 3D world by us-
ing genetic algorithms to modify morphologies and muscle
forces. Fitness evaluations (measures of success) act as an
optimization process in order to drive the evolution towards
the desired behaviour. In a similar fashion, [9] describes

how to use sensor-actuator networks to automatically gen-
erate controllers for simple jointed objects. This is done
using an initial random search, followed by a hill-climbing
refinement phase. While the results are nice, the problem
with these stochastic approaches is the lack of user control
over the resulting behaviours.

3. System Outline
 Our system is implemented completely using the Maya
API and MEL scripting language, providing us with a rich
set of modeling, rendering, and animation features that we
can build upon. Our swimmer is defined using rectangular
rigid bodies, with hinge constraints between each to join the
bodies together into a humanoid character. Note that while
each hinge constraint only provides one degree of rotational
freedom, the hinge axis can still be oriented in any way
such that our swim stroke does not have to be confined to a
single plane. Figure 1 shows a skinned version of our
hinged rigid body swimmer and the associated hinge axes.

Figure 1 – Hinged swimmer and rotational degrees

of freedom
The motion of our swimmer is described by applying ap-

propriate hinge torques to the constraints (described further
in Section 4). A Maya plugin called dynSwim was devel-
oped to encapsulate this muscle control system. At run-
time, a single dynSwim instance drives the motion of the
entire rigid body skeleton. To compute lift and drag forces
to thrust the swimmer forward (Section 5), another plugin
called dynFluid was developed. Since the fluid forces
are computed separately for each body part, a separate in-
stance of dynFluid is declared for each rigid body. Due
to Maya’s connection-based architecture, the entire swim-
ming system is updated each time Maya updates its current
frame time.

Since the rigid body skeleton itself isn’t very impressive
visually, a jointed skeleton is defined based on the positions
of the various constraints. An arbitrarily complex 3D mesh
can then be skinned onto this jointed skeleton for improved
visuals.

As mentioned earlier, the user is provided with limited
high-level control of the animation via a target position and
target orientation. The only environment parameters that
the user can currently set are fluid viscosity and hand di-
mensions. Based on these inputs, the swimmer continues to
perform the desired swim stroke, and the targeting system
makes the appropriate adjustments in order to bring the
swimmer closer to the target pose (Section 4.3). The over-
all system architecture is depicted in Figure 2.

Figure 2 – System architecture

4. Muscle Model and Directional Control
Using the high-level input parameters describing the tar-

get position and orientation, the swimmer can be made to
pass through a set of target points in the 3D world. Using a
layered approach, we define three abstraction levels in or-
der to control the swimmer:
� Muscle Control Layer: this is the lowest level, and it

consists of the control law and joint torques that place
the swimmer through the motions of a swimming stroke
in order to thrust the body forward.

� Primitive Rotation Layer: this middle layer consists of
basic primitive movements (rotate in the X-axis, rotate
in the Y-axis, rotate in the Z-axis) that are performed by
slightly modifying the stroke being performed in the
Muscle Control Layer.

� Trajectory Layer: this high-level layer takes the user-
defined target position and orientation, and drives the
swimmer towards this goal using the functionality of the
previous two layers.

4.1 Muscle Control Layer
While our system is general enough to handle any type

of stroke, we currently focus on the breaststroke. Figure 3
shows a professional swimmer going through the motions of
a breaststroke in the forward direction [8]. The various
phases of the breaststroke are shown in Figure 4, with cor-
responding stick figures and delimiting instants [15].

Figure 3 – Swimmer performing a breaststroke

(left to right, top to bottom)

Figure 4 – Phases of the breaststroke

Based on these actual breaststroke states from the bio-
mechanics literature, we define a pose control graph (PCG)
as described in [7]. The PCG, which is basically a finite
state machine, specifies a set of desired joint angles for
each of the swimmer’s hinges, as well as timing and transi-
tion information. This provides a convenient way to spec-
ify the torques that must be applied to our rigid body skele-
ton through the phases of our breaststroke.

In other words, we have a set of poses defining our
swimming motion, but they define desired joint angles
rather than actual joint angles. Proportional-derivative
(PD) servos then make use of these desired joint angles at

each time step to compute the output torque τ required for
each joint, based on the following control equation:

)()(θθθτ D
ddp kk −−−=

where dθ defines the desired joint angle, θ defines the

actual joint angle, θD defines the current angular velocity of
the joint, and kp and kd represent, respectively, the propor-
tional and derivative spring constants for the joint. Using
this per-joint PD control, we can then perform full-body
pose control using the pose sequence defined in the PCG,
with the output torques being applied to our rigid body
swimmer.

The breaststroke PCG is shown in Figure 5. Note that
while we represent our breaststroke PCG as a continuous
cycle, a PCG in general does not have any transition limita-
tions. Currently, our PCG is defined by setting poses using
the jointed skeleton, and then saving the desired joint an-
gles to a pose file using a custom MEL script. Since our
rigid body skeleton is hinge-based, we must make some
simple approximations to the breaststroke due to our lim-
ited degrees of rotational freedom, most notably during the
insweep/arm squeezing phase. Figure 6 shows the current
breaststroke poses for our hinged rigid body.

Figure 5 – Breaststroke PCG

Figure 6 – Rigid body breaststroke

4.2 Primitive Rotation Layer

 Using the symmetric rigid-body breaststroke as a starting
point, we place the joint angles for each pose/state in a ma-
trix M, defined as follows:

k pose

1 pose

111

111

o

m

ooorooo

m

















=
n
z

n
y

n
xzyx

n
z

n
y

n
xzyx

M
θθθθθθ

θθθθθθ

where i
zyx ,,θ represents the angle for joint i = [1..n], and

each k-th row of the matrix represents the k-th pose/state of
our PCG [7].

We then define six minor modifications to the poses that
make the swimmer rotate in each of the three rotation axes
(in both the positive and negative directions). These poses
are currently defined by hand using the jointed skeleton
within Maya, similar to how the original symmetric breast-
stroke poses were defined. Given these modified poses, a
new matrix Mj is defined, j = [1..6], and a perturbation ma-
trix Mj

p is computed for each:
Mj

p = Mj – M
The elements of the perturbation matrices represent the
desired joint angle deltas between the original stroke and
the turning strokes.

Swimmer rotation is accomplished by applying a sum of
the various perturbations at each time step to the desired
joint angles used for pose control, based on how much we
would like to rotate. Since each perturbation matrix applies
a fixed delta value to each desired joint, we can adjust the
rotation magnitude simply by scaling each perturbation
matrix by some factor k. Note that scaling the turning per-
turbation only works if the swimmer’s motion changes rea-
sonably with k. With a few test runs, we found that k =
[0...2] is a valid range for our current rigid-body breast-
stroke in each of the rotation axes.

4.3 Trajectory Layer
 Now that we have some primitive rotations defined, any
type of high-level path planning algorithm could be imple-
mented, along with collision avoidance and route efficiency
parameters. In our current system we implemented a simple
targeting system whereby the swimmer continuously at-
tempts to move closer to a user-defined target object. In
other words, given the swimmer’s current position and ori-
entation, the targeting system attempts to determine which
direction to rotate in order to get closer to the target posi-
tion. Since the poses are defined such that forward progress
is continuously made, the swimmer moves closer and closer
to the target.

We have also implemented some simple interactive con-
trol for the swimmer. Within the Maya environment, we
define a set of hotkeys for the various directions we’d like
to navigate the swimmer. The target object is then auto-
matically positioned in front of the swimmer in the current

forward direction. Each rotation hotkey then modifies the
position of the target object in the desired direction. The
target object then returns to its natural position (in front of
the swimmer’s current forward direction) over a few sec-
onds. In other words, if the user presses a rotation key just
once and then releases, the swimmer will rotate slightly in
the appropriate direction, then level off and continue to
move forward. If a rotation key is held down for a few sec-
onds, the target object will remain offset from its natural
position for a longer period of time, thus causing the
swimmer to continue rotating in the desired direction until
the hotkey is released.

5. Fluid Dynamics
The forward motion of the character is based on simple
laws of physics. When the character performs a stroke, the
arm motion displaces a volume of water. The inertia of the
displaced water creates a reaction force and propels the
character to move. Assuming the movement of the stroke is
relatively slow (the ratio of inertia forces to viscous forces,
the Reynolds number, is ≤ 1), we can express the reaction
force using Stokes law [3, 4]:

F = |V| * A * η
where V is the relative velocity of the motion to the fluid
and |V| is its magnitude, A is the cross-section area, and η is
the viscosity. The resulting force is in the opposite direc-
tion of the relative velocity V.

The force is calculated on a per polygon basis on the rec-
tangular rigid bodies. The force is then decomposed into
translational force and torque about the center of mass of
the object. The total translational force and torque is then
summed up and applied to the Maya rigid bodies in the
form of impulse and spin impulse.

The fluid does not have to be at rest. The user can de-
fine some function to describe the flow of the fluid. Cur-
rently, the fluid parameters available to users include spatial
position and time. This allows the user to define the flow
using some simple differential equation. However, for sim-
plicity, the fluid is currently static. That is, its interaction
with the character does not change its flow.

In our current implementation we have developed a
visualization technique for the fluid forces acting on the
swimmer. We draw vectors representing the total fluid drag
force acting on a particular body segment as a green line
attached to a circle. The length of the vector shows the
magnitude of the force and its direction corresponds to the
force’s direction (Figure 6).

6. Results
In order to validate that the various parameters affect the

performance of the swimmer as expected, we perform a
series of tests by modifying the body/environment parame-
ters and then compute the displacement of the swimmer for
each. Note that Maya currently does not document the units

in which rigid body masses are defined in. As a result, we
make the assumption they are in pounds, and our rigid body
parts are thus assigned masses such that the total mass of
the swimmer is approximately two-hundred pounds. We
currently use the proportions listed in Table 1 for our rigid
body parts, based on data from the biomechanics literature.

Table 1 – Mass proportions for rigid bodies
Rigid Body Human Mass % Simulation Mass %

Head 8% (Head and Neck) 8%

Torso 49%

Pelvis
68% (Total)

19%

Right Upper Arm 1%

Right Lower Arm 0.6%

Right Hand

3% (Total Arm)

1.4%

Left Upper Arm 1%

Left Lower Arm 0.6%

Left Hand

3% (Total Arm)

1.4%

Right Thigh 5%

Right Shin 3%

Right Foot

9% (Total Leg)

1%

Left Thigh 5%

Left Shin 3%

Left Foot

9% (Total Leg)

1%

The effect of not knowing the correct mass units is that

the useful ranges of our other parameters are skewed from
realistic ranges (most notably our viscosity).

In each of the following cases, the parameter being
tested was sampled uniformly, while the remaining parame-
ters remained at their default values (including the kp and kd
parameters for each joint, which correspond to muscle
strengths, as well as body mass). Using Maya’s playblast
option, the swimmer was then put through the motions of
the symmetric forward breaststroke for 200 frames (ap-
proximately 7 seconds at NTSC quality). The default vis-
cosity parameter is 0.2, and the default hand dimensions are
defined by the artist within the Maya environment.

6.1 Effect of Viscosity

Figure 7 plots the swimmer displacement against fluid vis-
cosity ranging from 0.029 to 0.2. As expected, at low vis-
cosities the swimmer has a difficult time making forward
progress since there is less drag force (similar to trying to
swim in air). When viscosity is increased, the swimmer’s
strokes become more effective, propelling him through the
fluid. As viscosity continues to increase this effect is re-
duced due to the increased drag during the insweep and
recovery phases of the stroke. Additionally the swimmer
may struggle to keep up to the desired poses since higher

viscosity slows his movements while muscle strength re-
mains constant.

 Our current system cannot handle significantly larger
viscosity values due to numerical “blow-ups” as a result of
the larger errors in the PD control. However, it is worth
making some theoretical predictions regarding displacement
at viscosity values beyond the range shown in the graph.
Ultimately, we expect to see displacement gradually drop
down to zero and then remain at that level, since there
would be a critical point after which the constant muscle
strength can no longer thrust the rigid bodies through the
highly viscous fluid.

0
1
2
3
4
5
6
7
8
9

10

0.03 0.05 0.07 0.09 0.11 0.12 0.14 0.16 0.18 0.2

Viscosity

D
is

pl
ac

em
en

t

Figure 7 – Plot of viscosity vs. displacement

6.2 Effect of Hand Dimensions

Our current system implementation visually depicts the
effect of water forces on the various rigid bodies within
Maya, and for the breaststroke it was observed that the
largest forward thrust was achieved during the outsweep
phase of the stroke. As a result, we tested the effect of
changing the dimensions of the hand to see what effect, if
any, they had on the swimmer’s performance. This corre-
sponds to modifying the cross-section area of the body in-
teracting with the fluid (Section 5).

Figure 8 plots the displacement of the swimmer against
changing hand dimensions (via unit deltas in hand width
and hand length). For the hand width and hand length
changes, the area of the hand against the fluid throughout
the outsweep motion increases, causing more drag and thus
more forward thrust. Intuitively, there would eventually be
a drop off in increasing forward thrust, since muscle
strength (torque) at the joints remains constant but there is
increased drag against the rigid body that must be over-
come. Both of the experiments increase the hand area by
the same amount, but hand length lends the swimmer
greater propulsion due to the increase in torque provided by
the longer arms with higher velocities at the tip of the hand.

The displacement due to hand width falls off slightly due to
pitching of the entire figure caused by the extended hands.

0

1

2

3

4

5

6

7

0 1 2 3 4 5

Size Delta

D
is

pl
ac

em
en

t

Hand Width

Hand Length

Figure 8 – Plot of viscosity vs. hand dimensions

6.3 Muscle Strength and Mass Settings

The kp and kd spring constants for the joints, as well as
the rigid body masses, could also be modified to vary the
performance of the swimmer. However, there does not
seem to be any science when choosing appropriate values
for these parameters. Slight modifications of our current
masses and constants results in large oscillations of the rigid
bodies during PD control (due to large errors between the
desired and actual joint poses). Admittedly, significant
manual tweaking of these parameters was required in order
to generate stable simulation results.

6.4 Comparison with Real Swimmers

The main goal of this work was to determine whether
natural and realistic swimming strokes were possible to
simulate using rigid body dynamics. Figure 9 shows images
from video footage of a real swimmer performing a breast-
stroke placed side-by-side with rendered images of our rigid
body swimmer performing the same stroke. As can be seen,
the resulting motion is fairly good visually, but does not
always accurately mimic the real-life swimmer, most nota-
bly during the insweep phase of the stroke (since our hinged
swimmer has only a single degree of rotational freedom at
the shoulder joint). Additionally, during the kick phase of
the breaststroke, a real swimmer typically rotates the hips in
both the X and Y axes, whereas our swimmer can only ro-
tate hips in the Y axis, reducing the propulsive effect of the
overall kick. Finally, forward thrust is relatively low in
comparison to the real-life swimmer’s displacement, largely
due to our simple fluid model that assumes slow moving
bodies. Increasing the mass of the swimmer could poten-
tially help increase forward momentum, but this would re-
quire additional corresponding tweaking of the joint spring
constants.

Figure 9 – Images of real and simulated breast-
strokes

7. Discussion and Future Work
Clearly, one of the main limitations of our system is the

use of hinge constraints instead of pin (ball and socket)
constraints for the various joints of our swimmer. As a re-
sult, the range of realistic swimming strokes we can simu-
late is greatly reduced as described earlier. The use of
hinge constraints for all joints was a result of limitations
within the Maya dynamics system. Currently, Maya only
allows applying torques (spin impulses) at the centre of
mass of a rigid body, instead of at the actual constraints.
Therefore, we were required to implement our own joint
torque system within the Maya environment. As a result,
implementing and thoroughly testing this using hinges in-
stead of pin constraints simplified the process. The other
option would have been to use an existing dynamics library
(or implement our own) with the desired functionality in-
stead of using Maya’s dynamics system, but at the cost of
losing other useful dynamics features that Maya already
provides (emitters, gravity fields, etc.) Another option is to
extend the current hinged system to support higher degrees
of freedom on joints by using multiple axis-aligned hinges
in close proximity to each other. For example, at the shoul-

der, we could define three orthogonal hinges connecting
extremely small rigid bodies together. Then PD control
could be performed individually on each of these hinges
independently, providing us with a close approximation to
pin constraints with the added ability to apply torques at the
joints.

Another limitation of our current system is the assump-
tion that the Reynolds number of our rigid bodies in fluid
will be less than or equal to 1. This prevents us from gen-
erating fast, powerful strokes with complex drag forces
(Reynolds number greater than one). If we could imple-
ment such a system, it would allow the swimmer to experi-
ence significant forward thrust that would more closely
resemble a real swimmer in water. Currently, due to our
Reynolds assumption, the swimmer’s continuous forward
acceleration is not as significant as it would be in reality.
An alternative system would dynamically compute the drag
coefficients for body parts as the fluid passes by them.
Most fluid dynamics textbooks provide experimental data
on drag coefficients for simple 2D and 3D shapes. We may
be able to apply this data to compute the drag of a body part
as it changes it’s orientation in the fluid.

In our current implementation, the PCG is defined by
manually orienting the jointed skeleton into desired poses,
and then saving the joint angles out to a data file. One in-
teresting area of future work is using vision-based motion
capture techniques to both automate the PCG acquisition
process, as well as make our poses more closely resemble
actual swimmers. Traditional motion capture using mag-
netic or marker-based sensors is difficult underwater, and
thus vision techniques seem to be the most promising ap-
proach, but existing methods fail to handle other key issues
such as self-occlusions, underwater visual distortions, and
precise tracking of constant skin tone areas [13].

Currently, swimming coaches have to rely on simple
video footage recorded at fixed camera positions, or ex-
tremely expensive fluid flow equipment that is attached to a
swimmer’s body [11], in order to analyze the performance
of professional swimmers. The ultimate goal of a physics-
based swimming animation system would be to have the
interaction between the fluid and swimmer behave so realis-
tically that swimming instructors and coaches could use the
system as a tool to analyze the effects of various stroke
techniques on swimmer performance. Our current system is
quite far from being used for such purposes, but with a
more advanced fluid model that takes swimmer interaction
into account as well as a detailed rigid body swimmer
model with more rotational freedom, such a tool should be
quite achievable.

8. Conclusion
In this paper, we outlined a system to animate humanoid

swimming using a rigid body muscle control system and a
simple fluid dynamics model. The system is shown to pro-

duce fairly nice visual results, but realism is limited due to
the use of hinge joints instead of more general ball and
socket joints. Directional control is implemented using a
layered approach, allowing the swimmer to navigate
through the fluid algorithmically or interactively via user
input.

Acknowledgments
A huge thank you goes to both Joe Laszlo and Karan Singh
for the fruitful discussions and myriad of ideas they pro-
vided regarding this project.

References
[1] F.P. Beer, E.R. Johnston, Jr. Vector Mechanics for

Engineers. WCB McGraw Hill, Sixth Edition, Boston
(1996).

[2] M. Berger, A. Hollander, G. De Groot. “Determining
propulsive force in front crawl swimming: A compari-
son of two methods”. In Journal of Sports Sciences,
17:97-105 (1999).

[3] Y. Cengel, R. Turner. “Fundamentals of Thermal-
Fluid Sciences”. McGraw Hill, New York (2001).

[4] A.J. Chorin, J. E. Marsden. A Mathematical Introduc-
tion to Fluid Mechanics. Springer-Verlag, New York
(1979).

[5] A. Craig, D. Pendergast. “Relationships of stroke rate,
distance per stroke, and velocity in competitive swim-
ming”. In Medicine & Science in Sports, 11(3):278-83
(Fall 1979).

[6] J. Hodgins, W. Wooten, D. Brogan, J. O’Brien. “Ani-
mating Human Athletics”. In Proceedings of ACM
SIGGRAPH, pp. 71-78 (1995).

[7] J. Laszlo. “Controlling Bipedal Locomotion for Com-
puter Animation”. M.A.Sc. Thesis, University of To-
ronto, 1996.

[8] T. Laughlin. “Breaststroke Breakthrough”. Web link:
http://www.burlingameaquatics.com/age_swim/swim_c
orner/breaststroke.htm

[9] M. van de Panne, E. Fiume. “Sensor-actuator net-
works”. In Proceedings of ACM SIGGRAPH, pp.
335-342 (1993).

[10] B. Ramakrishnananda, K. Wong. “Animating Bird
Flight Using Aerodynamics”. The Visual Computer,
15:494-508 (1999).

[11] S. Riewald. “Designing the Optimum Stroke”. Article
in Fluent Newsletters (Spring 2000).

[12] K. Sims. “Evolving Virtual Creatures”. In Proceed-
ings of ACM SIGGRAPH, pp. 15-22 (1994).

[13] C. Sminchisescu. “Estimation Algorithms for Am-
biguous Visual Models”. Ph.D. Thesis, MOVI Group,
INRIA, 2002.

[14] J. Stam. “Stable Fluids”. In Proceedings of ACM
SIGGRAPH, pp. 121-128 (1999).

[15] J. Troup. “The Physiology and Biomechanics of Com-
petitive Swimming”. Clinics in Sports Medicine, Vol-
ume 18, Number 2, April 1999.

[16] X. Tu, D. Terzopoulos. “Artificial Fishes: Physics,
Locomotion, Perception, Behavior”. In Proceedings of
ACM SIGGRAPH, pp. 43-50 (1994).

[17] J. Wejchert, D. Haumann. “Animation Aerodynam-
ics”. In Proceedings of ACM SIGGRAPH, pp. 19-22
(1991).

[18] A. Witkin, D. Baraff. “Physically Based Modeling:
Principles and Practice”. ACM SIGGRAPH Course
Notes (1997).

