
 
 

Robust Registration of Virtual Objects for Real-Time 
Augmented Reality 

 
 
 

by 
Shahzad Malik 

 
A thesis submitted to  

the Faculty of Graduate Studies and Research  
in partial fulfillment of  

the requirements for the degree of  
 

Master of Computer Science 
 
 

The Ottawa-Carleton Institute for Computer Science 
School of Computer Science 

Carleton University 
Ottawa, Ontario, Canada 

 
 

May 8, 2002 
 

Copyright © 2002, Shahzad Malik 
 



 

 ii

The undersigned hereby recommend to 
the Faculty of Graduate Studies and Research 

acceptance of the thesis, 
 

Robust Registration of Virtual Objects for Real-Time Augmented Reality 
 

submitted by 
 

Shahzad Malik 
 

in partial fulfillment of 
the requirements for the degree of 

Master of Computer Science 
 
 
 

___________________________________________ 
Dr. Frank Dehne 

(Director, School of Computer Science) 
 
 

___________________________________________ 
Dr. Gerhard Roth 

(Thesis Supervisor) 
 
 

___________________________________________ 
Dr. Prosenjit Bose 
(Thesis Supervisor) 

 



 

 iii

Abstract 
 
Augmented reality is a technology which allows 2D and 3D computer graphics to be 

accurately aligned or registered with scenes of the real-world in real-time.  The potential 

uses of this technology are numerous, from architecture and medicine, to manufacturing 

and entertainment.  Vision-based techniques which augment objects onto predetermined 

planar patterns are considered the most promising approach for achieving accurate 

registrations, but the majority of the proposed methods fail to provide any robustness to 

significant changes in pattern scale, orientation, or partial pattern occlusion. 

 

This thesis presents the design and implementation of a robust pattern-based 

augmentation system that addresses these problems, and analyzes its performance using 

standard consumer-level hardware.  Known planar patterns are tracked in a real-time 

video feed, and virtual 2D and 3D objects are accurately augmented onto these patterns 

based on the plane’s orientation.  A method to achieve perspective-correct augmentations 

without the need for a manual camera calibration procedure is also described. 
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Chapter 1 
 
Introduction 
 
 
The sights and sound of a cool fall afternoon bring a sense of calm to the mind and soul.  

Red and yellow leaves flutter in the gentle breeze, a frisky little squirrel collects acorns 

for the pending winter, a flock of geese fly south in unison overhead, and a 20-foot T-Rex 

gently sips water from the clear flowing creek.  

 

Hollywood movies have been merging computer-generated imagery with scenes of the 

real world for several years now, and the results are so realistic that it is sometimes 

difficult to differentiate between the real and the virtual.  From the synchronized 

interactions between man and dinosaur in Jurassic Park, to the re-creation of the Titanic 

in the movie of the same name, special effects artists seem to have mastered the art of 

seamlessly combining photo-realistic virtual 3D objects with pre-recorded 2D video 

footage.   

 

While the end results are fantastic, the process by which movie artists merge a 3D object 

into the real world is extremely time-consuming.  Even for a small ten-second clip, a 

dozen or so computer artists and animators can spend hours per frame in their attempts to 

perfectly augment the virtual objects into the video sequence.  The obvious question is 

whether this merging of virtual 3D objects with the real world can be done at interactive 

rates such that we can view and manipulate the 3D imagery in real-time.  Augmented 

reality is one such approach to achieving this goal.  

 

Unlike virtual reality (VR), which encompasses a user in a completely computer-

generated environment, augmented reality (AR) is a technology that attempts to enhance 

a user’s view of the real environment by adding virtual objects, such as text, 2D images, 

or 3D models, to the display in a realistic manner.  The motivation behind AR is that a 

user’s existing visual and spatial skills can be leveraged in order to interact with 

computer-generated objects, or to receive additional information about real-world 
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objects.  For example, Figure 1.1a shows an engineer’s original view of a city from the 

other side of a river, while Figure 1.1b shows the same view enhanced using augmented 

reality technology.  The result is that the viewer is now able to preview a new bridge 

design, as it would appear in its proposed natural environment, without actually 

physically erecting the bridge. 

 

While there are many aspects to consider when creating an augmented reality application, 

one of the most difficult is precisely calculating the user’s viewpoint in real-time so that 

the virtual objects are exactly aligned with the real-world objects [KATO00a].  For 

example, to automatically modify the scene in Figure 1.1a, the computer system must 

have some knowledge of the location and orientation of the surrounding environment, 

from the user’s perspective, before it can properly augment the new virtual bridge over 

top of the real scene.  Additionally, if the user wishes to see the new bridge from different 

angles and viewpoints so that the bridge appears to be a natural part of the environment, 

the system must be able to continually perform the augmentation in real-time.  This 

precise alignment and synchronization of virtual objects with the real world is referred to 

as the registration process. 

 

 
Figure 1.1 – Example of augmented reality for bridge building.   

(a) The untouched scene showing a view of a proposed bridge location.   
(b) The scene has been enhanced with an augmented reality model of the proposed 
bridge, allowing an engineer or city planner to preview the bridge before physically 

erecting it. 
 

(a) (b) 



 

 

3

This thesis concerns itself with finding robust solutions to these key augmented reality 

issues, specifically the precise registration of virtual objects over a real-time video feed.  

The next section describes additional motivation for this work, while Section 1.2 provides 

an overview of the various components in typical augmented reality environments.  

Section 1.3 then describes the scope of the research, and Section 1.4 notes the key 

contributions that will be made from our research.  Finally, Section 1.5 outlines the rest 

of this thesis. 

 

1. 1 Motivation 
 

As computers become increasingly smaller and more powerful, and as demand for 

interesting consumer electronics devices continues to increase, augmented reality has the 

potential to become the “killer application” that computer vision researchers have been 

waiting for.  Consider visiting a foreign city for the very first time, and not having any 

idea of where you are, or where you need to go.  Instead of consulting your dictionary on 

how to ask for directions in the local language, you instead put on your pair of sunglasses 

and immediately your surroundings are no longer so foreign.  With the built-in 

augmented reality system, your sunglasses have converted all of the real-world signs and 

banners into English.  As you move or turn your head, the translated signs all maintain 

their correct position and orientation, and additional directional arrows and textual cues 

guide you towards your desired destination.   

 

Or consider a medical student training to become a heart surgeon.  Instead of simply 

learning from textbooks and training videos, the student can apply his or her knowledge 

in an augmented reality surgery simulation.  The entire operation can thus be simulated 

from start to finish in a realistic emergency room setting using computer-generated 

images of a patient, as well as force-feedback medical tools and devices to provide a true-

to-life experience.   

  

While these seem like scenarios from a science fiction movie, they aren’t necessarily that 

far-fetched.  The key to creating an effective augmented reality experience is mimicking 



 

 

4

the real world as closely as possible.  In other words, from a user interface perspective, 

the user should not have to learn to use the augmented reality system but instead should 

be able to make use of it immediately using his or her past experiences from the real 

world.  Clearly, the visual aspect of augmented reality is a critical component in depicting 

this seamless environment, and the registration process thus plays a central role. 

 

Consider the augmented reality surgery training system described earlier.  If the 

registration process were inaccurate, the student would develop skills that would be 

effective in the augmented reality environment, but not necessarily in a real world 

operating room.  Similarly, for the sign translation sunglasses, an inaccurate registration 

could cause the augmented signs or banners to oscillate or drift from their intended 

positions, resulting in severe motion sickness for certain users.  

 

Computer vision researchers have been experimenting with real-time vision-based 

solutions to the registration problem for a few years.  The most promising of these 

involve tracking known patterns of features on planar surfaces from frame to frame, and 

using the extracted positions of these features to perform the augmentation of virtual 

objects onto the plane [KLIN99].  Figure 1.2 shows an example of pattern-based 

augmentation.  By tracking these pre-determined patterns, researchers hope to gain 

insights into the ultimate goal of tracking natural features in arbitrary environments. 

 

To further complicate the situation, the registration process must be fast enough for the 

augmentation of the virtual objects to be done in real-time on low-cost hardware.  

Clearly, in order for augmented reality applications to become widely accepted by the 

mass consumer market, we must first find efficient and reliable solutions to the real-time 

registration problem.  Only then can the potentials of augmented reality in fields such as 

medicine, construction, manufacturing, and entertainment [OHSH98, AZUM01, 

TAMU01] be fully realized (see Figure 1.3). 
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Figure 1.2 – Example of pattern-based augmented reality [KATO00a].   

(a) The original scene, showing a piece of paper containing a predefined pattern.   
(b) The same scene after augmenting a virtual object on top of the known pattern. 

 
 

 
Figure 1.3 – Applications of augmented reality.  Clockwise from top left: A 

surgeon’s “X-Ray Vision” of a patient’s brain; a virtual pipe superimposed onto a 
real industrial pipeline based on 2D floor plans [AZUM01]; autonomous virtual 

human playing checkers in real-time [BROL01]; annotations for the race-cars in a 
live sports broadcast [AZUM01]. 
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1.2 Augmentation Environment 
 

A typical augmented reality environment consists of a camera device, a display device, 

and in some cases a user-interface device to interact with the virtual objects. 

 

1.2.1 Camera and Display Technology 
 

In order to combine the real world with virtual objects in real-time we must configure 

camera and display hardware.  The three most popular display configurations currently in 

use for augmented reality are Monitor-based, Video See-through and Optical See-through 

[AZUM97a, VALL98].   

 

Monitor-based Display 

The simplest approach is a monitor-based display, as depicted in Figure 1.4.  The video 

camera continuously captures individual frames of the real world and feeds each one into 

the augmentation system.  Virtual objects are then merged into the frame, and this final 

merged image is what users ultimately see on a standard desktop monitor.  The advantage 

of this display technology is its simplicity and affordability, since a consumer-level PC 

and USB or FireWire video camera is all that is required.  Additionally, by processing 

each frame individually, the augmentation system can use vision-based approaches to 

extract pose (position and orientation) information about the user for registration 

purposes (by tracking features or patterns, for example).  However this simplicity comes 

at the expense of immersion.  Clearly, viewing the real world through a small desktop 

monitor limits the realism and mobility of the augmented world.  Additionally, since each 

frame from the camera must be processed by the augmentation system, there is a 

potential delay from the time the image is captured to when the user actually sees the 

final augmented image.  Finally, the quality of the imagery is limited by the resolution of 

the camera. 
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Figure 1.4 – Monitor-based display technology [VALL98] 

 
Video See-through Display 

In order to increase the sense of immersion in virtual reality systems, head-mounted 

displays (HMD) that fully encompass the user’s view are commonly employed.  There 

are two popular methods to bring HMDs into the augmented reality environment.  Figure 

1.5 shows a schematic for a video see-through augmented reality system.  In this 

configuration, the user does not see the real world directly, but instead only sees what the 

computer system displays on the tiny monitors inside the HMD.  The difference between 

this and a virtual reality HMD is the addition of video cameras to capture images of the 

real world.  While this configuration is almost identical to the monitor-based technology 

in terms of functionality, the use of a stereo camera pair (two cameras) allows the HMD 

to provide a different image to each eye, thereby increasing the realism and immersion 

that the augmented world can provide.  Like the monitor-based setup, the video see-

through display is prone to visual lags due to the capture, processing, augmentation, and 

rendering of each video frame.  Additionally, a large offset between the cameras and the 

user’s eyes can further reduce the sense of immersion, since everything in the captured 

scenes will be shifted higher or lower than where they should actually be (with respect to 

the user’s actual eye level). 
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Figure 1.5 – Video see-through display technology [VALL98] 

 
Optical See-through Display 

The other popular HMD configuration for augmented reality is the optical see-through 

display system, as depicted in Figure 1.6.  In this setup, the user is able to view the real 

world through a semi-transparent display, while virtual objects are merged into the scene 

optically in front of the user’s eyes based on the user’s current position.  Thus when users 

move their heads, the virtual objects maintain their positions in the world as if they were 

actually part of the real environment.  Unlike the video see-through displays, these 

HMDs do not exhibit the limited resolutions and delays when depicting the real world.  

However, the quality of the virtual objects will still be limited by the processing speed 

and graphical capabilities of the augmentation system.  Therefore, creating convincing 

augmentations becomes somewhat difficult since the real world will appear naturally 

while the virtual objects will appear pixilated. The other major disadvantage with optical 

see-through displays is their lack of single frame captures of the real world, since no 

camera is present in the default hardware setup.  Thus position sensors within the HMD 

are the only facility through which pose information can be extracted for registration 

purposes1.  Some researchers have proposed hybrid solutions that combine position 

sensors with video cameras in order to improve the pose estimation; Section 2.4 discusses 

these hybrid solutions in more detail. 

 

                                                 
1 Chapter 2 describes position sensors for registration purposes in more detail. 
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Figure 1.6 – Optical see-through display technology [VALL98] 

 
1.2.2 Haptic User-Interface Device 
 

Similar to virtual reality systems, augmented reality requires some facility through which 

a user can physically interact with the virtual objects.  Haptic input devices provide this 

facility, but with the added ability to provide touch sensations to the user. 

 

Consider a virtual coffee mug that has been augmented onto a user’s real desk.  With a 

specially designed glove, a user could physically grab hold of the coffee mug and hold it 

in his or her hand.  With sensors in the palm and fingertip area of the glove, the user 

could feel the weight of the virtual mug as well as sense the texture across the mug’s 

surface.  Further, the augmented environment could simulate gravity as well, and thus 

releasing the virtual mug would send it crashing to the ground.  Therefore, if simulated 

correctly, the user would not be able to distinguish this virtual mug from a real one.   

 

While conceptually very simple, these haptic devices are under intensive research since 

recreating realistic physical sensations is a difficult problem.  Many different devices 

have been proposed, from the above mentioned force-feedback gloves to full-size 

bodysuits that apply forces to a user’s arms and legs.   A detailed survey of the various 

haptic user interfaces that are applicable to augmented reality environments is provided in 

[SRIN97]. 
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1.3 Scope 
 

The focus of this thesis is on the registration process of augmented reality, specifically as 

it relates to the augmentation of 2D and 3D objects onto planar surfaces containing 

patterns of features.  Our hypothesis is that the level of reliability or robustness that can 

be achieved will largely depend upon the features we choose to track, as well as the 

arrangement of these features in our planar patterns.  Therefore, our research will attempt 

to analyze what constitutes a reliable pattern that is stable enough for high-quality, real-

time augmentation.   

 

1.3.1 Robustness Criteria 
 

The robustness of a set of features will be assessed based on the following criteria: 

 

Speed 

For the purposes of real-time augmentation, the speed of our registration process is 

critical.  Even if we can fulfill any of the other robustness criteria, our feature tracking 

system must still be able to run at interactive rates on consumer-level hardware. 

 

Self Identification 

If we are to augment virtual objects onto prearranged planar patterns, then we must be 

able to uniquely identify the pattern layout such that the proper association with a virtual 

object can be made. 

 

Scale and Orientation Invariance 

If a pattern layout is only reliable or identifiable at close range, then the augmentation of 

a virtual object onto that pattern will have a tendency to jitter severely or eventually 

disappear as a user gradually moves away from the object.  Conversely, a pattern layout 

that is reliable only from far distances will cause an augmented object to jitter or 

disappear when a user attempts to examine it closely.  Ideally, we would like a pattern 

arrangement that can robustly register the object with the environment both up close as 
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well as from a reasonably far distance.  Similarly, a pattern that is not reliable or 

identifiable when viewed at extreme orientations (i.e. not completely front-facing) limits 

the ability to view augmented objects. 

 

Robust to Occlusion 

Clearly, for pattern-based augmented reality, attempting to examine an augmented object 

close up may cause some patterns to be out of the user’s field of view.  Similarly, if the 

user simply waves his or her hand over top of the pattern, some features may become 

temporarily occluded.  In a perfect world, we would like to have a pattern layout that can 

compensate for these minor occlusions such that the virtual object continues to be 

augmented onto the display, at the right position with little or no jitter. 

 

Robust to Lighting Changes 

Similar to the occlusion problem, major changes in lighting could affect an augmentation 

system’s ability to detect certain features in a pattern layout.  Thus a pattern that can 

handle dynamic lighting changes is a major consideration when it comes to robustness in 

augmented reality. 

 

1.3.2 The Visual-Visual Registration Problem 
 

Registration is defined as the precise alignment and synchronization of two or more 

sensory elements [AZUM97b].  Thus far we have presented an introduction to the 

registration problem as it relates to accurately aligning virtual objects with the real world 

in augmented reality displays.  However, this only addresses the visual-visual registration 

problem.  In augmented reality, accurate registration between other sensory elements, 

such as haptic and auditory (and in the future possibly even taste and olfactory), is also 

crucial.  Thus if a user swings a real baseball bat at a virtual baseball, an appropriate 

sound and force should be presented at the exact moment contact is made between the bat 

and the ball. 

 



 

 

12

The quality of a user’s experience with a virtual or augmented world is directly related to 

the quality of the registration process.  Even if there is a slight delay between any of the 

sensory elements, the user’s immersion in the world is negatively impacted.  Since 

system delays are nearly impossible to avoid, the trick is to reduce these delays to an 

acceptable level so that they are not noticeable and do not reduce the quality of 

immersion.  In augmented reality, the visual-visual registration errors are much more 

critical than other registration errors (such as the visual-auditory or visual-haptic errors) 

[AZUM97b].  Thus our research will focus on the visual-visual registration problem 

since it is the most critical for creating an effective augmented environment2. 

 

1.4 Contributions 
 

This thesis presents a solution for real-time augmented reality that can operate on low-

cost consumer-level hardware.  The key contributions [MALI02a, MALI02b] are: 

 

� A system architecture and implementation overview for a real-time augmented 

reality system that can augment virtual objects onto known patterns of planar 

features at real-time frame rates. 

 

� An analysis of the proposed augmentation system, outlining what features allow 

for stable registrations, and what pattern layouts are self-identifying, provide 

invariance to scale, and are robust to occlusion and lighting changes. 

 

� An automatic and stable camera calibration method that is specially suited to our 

pattern-based augmented reality system3. 

 

                                                 
2 For the remainder of this thesis, we will refer to the visual-visual registration problem as simply the 
registration problem. 
3 Chapter 2 discusses camera calibration in more detail. 
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1.5 Thesis Overview 
 

The rest of this thesis is organized as follows: 

 

Chapter 2 reviews previous work that our research draws upon, and also presents some of 

the mathematical principles underlying augmented reality technology.  

 

Chapter 3 discusses planar homographies, which are extremely useful for augmentations 

of virtual 2D and 3D objects onto planar patterns. 

 

Chapter 4 details the pattern-based augmented reality system that we have developed, 

focusing on the advantages, disadvantages, and tradeoffs of the 2D feature-tracking 

component.  An overview of the system as it processes a real-time video feed into a fully 

augmented 2D or 3D scene is described. 

 

Chapter 5 analyzes the implementation of the real-time augmented reality system in terms 

of robustness, registration stability and performance. 

 

Chapter 6 concludes the thesis by summarizing the contributions made, comparing our 

results to previous work, and proposing areas for future research. 
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Chapter 2 
 
Related Work 
 
 
In this chapter, we review prior work in the field of augmented reality from which our 

research draws upon.  We start by providing an introduction to the mathematical concepts 

of augmented reality, and describe how they relate to the registration problem.  We then 

present a brief survey of various proposed solutions to the registration problem in the 

current augmented reality literature.  We conclude by briefly describing some open 

issues. 

 

2.1 The Mathematics of Augmented Reality 
 

Before we can discuss the various solutions that have been proposed to solve the 

registration problem, we need to review some key mathematical ideas. 

 

2.1.1 Coordinate Systems 
 

The mathematical nature of the registration problem that has to be solved is depicted in 

Figure 2.1.  The following three transformations, as described in [VALL98], that all 

augmented reality applications need to consider are Object-to-world, World-to-camera, 

and Camera-to-image plane. 

 

Object-to-world (MO) 

Assuming that we have a virtual object centered on its own local coordinate system, MO 

will specify the transformation from this local system into a position and orientation 

within the world coordinate system that defines the real scene. 
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World-to-camera (MC) 

The MC transformation specifies the position and orientation (pose) of the video camera 

that is being used to view the real scene, allowing points in the real world to be specified 

in terms of the camera’s origin. 

 

Camera-to-image plane (MP) 

The MP transformation defines a projection from 3D to 2D such that camera coordinates 

can be converted into image coordinates for final display onto a monitor or HMD. 

 

 
Figure 2.1 – Coordinate systems in augmented reality [VALL98]. 

 

In order for an augmented reality application to correctly render a virtual 3D object over 

top of a real scene, the above three geometric transformations have to be accurate.  An 

error in any one of the relationships will cause the registration to be inaccurate, reducing 

the realism of the final augmented scene (see Section 2.2 for more information on these 

registration errors). 

 

Since the virtual 3D objects will be rendered using standard 3D graphics hardware, it 

follows that they be represented using traditional computer graphics data structures.  The 

surface of our virtual object can thus be represented as a triangular mesh, which consists 
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of a set of 3D vertices and a set of non-overlapping triangles connecting these vertices 

[FOLE90]. 

 

Using homogeneous coordinates, the obvious approach to augmenting these virtual 

objects requires that we determine the 2D projection [u, v, h] of a 3D point in Euclidean 

space [x, y, z, w] using the following equation: 

 

[u v h]T = MP(3x4) MC(4x4) MO(4x4) [x y z w]T 

 

The following sections will discuss ideas from projective vision that allow us to explicitly 

determine the MP, MC, and MO transformations. 

 

2.1.2 Camera Models 
 

Assuming we have a [x, y, z] vertex in camera coordinates, projective geometry allows us 

to define the transformation MP which can convert this 3D point into 2D image space. 

 

The Perspective Camera 

Figure 2.2 shows the perspective or pinhole camera model, which is considered the most 

common geometric model for video cameras [TRUC98].  The optical axis is defined as 

the line through the center of focus (a 3D point), which is perpendicular to the image 

plane.  The distance between the image plane and the center of focus is referred to as the 

focal length (f).  The principal point is the intersection of the optical axis and the image 

plane.  Assuming we have any other point P = [X, Y, Z] in 3D, and if we consider the 

image plane to define our 2D image, then the 2D projection of P is the intersection 

between the image plane and the line through the center of focus and P, denoted by p = 

[x, y, z].  In other words, we have 
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Z
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Z
Xfx

=

=
 

Equation 2.1 – Perspective projection 

 
Figure 2.2 – The Perspective Camera Model 

 
The Weak-Perspective Camera 

Since the perspective projection is a non-linear mapping, it tends to make vision 

problems difficult to solve [XU96].  A commonly used approximation to the perspective 

camera model that simplifies certain computations is the weak-perspective camera.  If, for 

any two points in a scene, the relative distance along the optical axis, δz, is significantly 

smaller than the average depth, Zavg, of the scene, then the approximation holds 

[TRUC98].  Typically, δz < (Zavg / 20).  Conceptually, we can think of the projection as a 

two-step projection [XU96].  The first is a projection of the object points onto a plane 

which goes through Zavg.  The second is a uniform scaling of the Zavg plane onto the 

image plane (see Figure 2.3).  Mathematically, we have 
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Equation 2.2 – Weak-perspective projection 
 
Typically, Zavg can be the centroid of some small object in a scene [XU96]. 

  
Figure 2.3 – The Weak-perspective Camera Model 

 
2.1.3 Camera Parameters 
 

There are two subsets of camera parameters that can be used to determine the relationship 

between coordinate systems.  Known as the intrinsic and extrinsic parameters in the 

computer vision field, they are defined as follows: 

  

Intrinsic Camera Parameters 

 

The intrinsic parameters are those related to the internal geometry of a physical camera.  

In other words, they represent the optical, geometric, and digital characteristics of a 

camera.  The parameters are: 
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1) The focal length 

2) The location of the image center in pixel space 

3) The pixel size in the horizontal and vertical directions (see [TRUC98] for further 

details related to image sensors and pixel aspect ratios) 

4) The coefficient to account for radial distortion from the optics 

 

The first parameter, the focal length, is the same parameter described in Section 2.1.2.  

 

The second and third parameters allow us to link image coordinates (xim, yim), in pixels, 

with the respective coordinates (x, y) in the camera coordinate system.  This is done quite 

simply: 

yyim

xxim

soyy
soxx
)(
)(

−−=
−−=

 

Equation 2.3 – Linking pixel coordinates and camera coordinates 
 

where (ox, oy) define the pixel coordinates of the principal point, and (sx, sy) define the 

size of the pixels (in millimeters), in the horizontal and vertical directions respectively.  

Using Figure 2.2 as our reference, the sign change is required if we assume that the image 

has its x coordinates increasing to the right, and the y coordinate increasing going down, 

with the origin of the image in the top-left corner. 

 

The final parameter allows us to account for radial distortions that are evident when 

using camera optics with large fields of view [TRUC98].  Typically, the distortions are 

most pronounced at the periphery of the image, and thus can be corrected using a simple 

radial displacement of the form 

)1(

)1(
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2
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Equation 2.4 – Correcting for radial distortion 
 
where (xd, yd) is the distorted point in camera space, and r2 = xd

2 + yd
2.  k1 and k2 are 

additional intrinsic camera parameters, where k2 << k1.  Usually k2 is set to 0.  In many 

cases, radial distortion can be ignored unless very high accuracy is required in all parts of 

the image. 
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Extrinsic Camera Parameters 

The extrinsic parameters are concerned with external properties of a camera, such as 

position and orientation information.  They uniquely identify the transformation between 

the unknown camera coordinate system and the known world coordinate system 

[TRUC98].  The parameters, as depicted in Figure 2.4, are: 

1) The 3x3 rotation matrix R that brings the corresponding axes of the two 

coordinate systems onto one another 

2) The 3D translation vector T describing the relative positions of the origins of the 

two coordinate systems 

 

 
Figure 2.4 – Transformation between camera and world coordinate systems 

[TRUC98] 
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In other words, if we have a point Pw in world coordinates, then the same point in camera 

coordinates, Pc, would be: 

 

Pc = RPw + T 
Equation 2.5 – Transformation from world to camera coordinates 

 
where 














=

333231

232221

131211

rrr
rrr
rrr

R  

defines the rotational information. 

 

Therefore, if we neglect radial distortions, we can plug Equation 2.3 and Equation 2.5 

into our perspective projection equation (Equation 2.1), resulting in: 
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Equation 2.6 – Relation between 3D world coordinates and the corresponding image 
coordinates, using intrinsic and extrinsic parameters. 

 
where Ri, i = 1, 2, 3, denotes the 3D vector formed by the i-th row of the matrix R. 

 

Separating the intrinsic and extrinsic components, and placing the equations into matrix 

form, we get: 
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Equation 2.7 – Intrinsic camera parameter matrix 
 

where fu = -f / sx and fv = -f / sy, which defines the transformation between camera space 

and image space, and 
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Equation 2.8 – Extrinsic camera parameter matrix 
 
where t1 = -R1

TT, t2 = -R2
TT, and t3 = -R3

TT , which defines the transformation between 

world coordinates and camera coordinates. 

 

Therefore, our projection equation can now be expressed in homogeneous matrix form: 
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Equation 2.9 – Projection equation in homogeneous matrix form 
 
where x1/x3 = xim and x2/x3 = yim. 

 

Going back to our camera models, and setting some reasonable constraints on our 

parameters (ox = 0, oy = 0), we can express the perspective projection matrix as simply: 
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Equation 2.10 – Perspective projection matrix 
 

Similarly, [TRUC98] defines the weak-perspective camera matrix as: 
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Equation 2.11 – Weak-perspective camera matrix 
 

where P΄ is the centroid of two points, P1 and P2 in 3D space. 

 

2.1.4 Camera Calibration 
 

Now that we have defined our camera models and camera parameters, we now have a 

method to associate the various coordinate systems from Figure 2.1.  However, this 
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assumes that we know the actual values of our intrinsic and extrinsic parameters.  The 

process of determining the intrinsic and extrinsic camera parameters is known as the 

camera calibration problem [TRUC98].   

 

The basic idea is to solve for the camera parameters based on the projection equations of 

known 3D coordinates and their associated 2D projections.  Six or more such 

correspondences are required in order to solve a linear system of equations that can 

recover the twelve elements of a 3x4 projection matrix [ZISS98].  There are two common 

methods for camera calibration [TRUC98].  The first method attempts to directly 

estimate the intrinsic and extrinsic parameters based on finding features in a known 

calibration pattern, as depicted in Figure 2.5.  The second method first attempts to 

estimate the projection matrix linking world and image coordinates, and then uses the 

entries of this matrix to solve for the camera parameters.   

 

 
Figure 2.5 – A camera calibration pattern [TRUC98] 

 

The major difficulty with these calibration approaches is the need to perform them 

manually in a separate calibration procedure.  For the purposes of augmented reality, 

efficient and accurate camera calibration remains an open problem.  Section 2.4 and 2.6 

discuss some proposed calibration solutions with respect to vision-based augmented 

reality systems.   
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2.2 Registration Errors 
 

Since all augmented reality systems experience registration errors from many sources, it 

is worth describing them briefly since they affect the performance and immersion of the 

augmented environment.  The two main categories of registration errors, as described by 

[AZUM97a] are static and dynamic. 

 

2.2.1 Static Errors 
 

Static registration errors are defined as errors that occur when nothing is moving in the 

scene.  An example of a static error would be a virtual object appearing in different 

places when viewed from different viewpoints.   

 

There are four main sources of static errors [AZUM97a]: 

� Optical distortion: Radial distortions, as described briefly in Section 2.1.3, can 

cause registration errors when using optical see-through displays.  These errors 

can be compensated via additional optics, or by using image-warping techniques. 

� Tracking errors: Discrepancies in the reported location of a user’s head or other 

objects in a scene are the most serious source of static registration errors, since 

they are difficult to measure or eliminate. 

� Mechanical misalignments: Hardware components (cameras, optics, monitors) 

that aren’t particularly rigid may experience subtle changes as a user’s position or 

orientation changes.  The best solution to this static error source is to build 

hardware properly from the very beginning, since mechanical problems are 

difficult to compensate for. 

� Incorrect viewing parameters: These include discrepancies in the parameters used 

to render the virtual objects into the scene, such as the offset between the head 

tracker and a user’s eyes, the field of view, and the center of projection.  Accurate 

camera-calibration techniques help to reduce the effects of these static errors. 

 



 

 

25

2.2.2 Dynamic Errors 
 

Dynamic registration errors occur when either the user or virtual object are in motion, 

resulting in slight positional shifts of the augmented entities [VALL98].  In other words, 

the virtual objects seem to be out of sync with the real-world scene. 

 

Most dynamic errors occur as a result of system delays [AZUM97a].  For example, a 

vision-based augmented reality system must typically capture an image from the scene, 

determine the camera pose, transform virtual objects into camera space, render the virtual 

objects onto the original image, and display the final augmented scene onto the display.  

Each of these phases of the augmentation system requires a certain amount of processing 

time.  Suppose the total required time is s.  If an image is captured at time t, then the user 

will not see the final image until time t + s.  If s > 50ms, a user’s sense of immersion in 

an augmented environment is strongly undermined [AZUM97a]. 

 

While constant technological improvements in processor performance will help resolve 

these system delays, they will never disappear completely.  Therefore, other techniques 

must be employed in order to reduce the effects of lag, such as viewpoint prediction, 

temporal stream matching (eg. video see-through displays), or more efficient algorithms 

in each phase of the augmentation system [AZUM97a]. 

 

2.3 Sensor-based Registration Approaches 
 

In the past, the majority of augmented reality systems have relied on sensors, such as 

magnetic, mechanical, or inertial, in order to measure the pose of the camera.  Note that, 

due to the high-precision requirements of the registration process, no sensing device 

alone has achieved the results required for most augmented reality applications 

[VALL98]. 
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2.3.1 Magnetic Sensors 
 

Magnetic tracking systems use digital compasses and the earth’s magnetic field to 

estimate the pose of the camera with respect to some reference position and orientation.  

The major advantage of these sensors is their portability; they can be used to perform 

augmentations almost anywhere.  Unfortunately, magnetic sensors are easily disturbed by 

the presence of metallic objects in the environment.  Additionally, these sensors 

experience latencies that can only be corrected via prediction algorithms.  Uncalibrated 

magnetic trackers can exhibit errors of 10cm or more, while carefully calibrated systems 

can reduce measurement errors to within 2cm [STAT00]. 

 

2.3.2 Inertial Sensors 
 

Some basic inertial tracking techniques are discussed in [YOU99a].  Inertial sensors 

consist of two devices: 

- Gyroscopes: provide a rate of rotation that can be used to determine orientation 

changes of a user’s head. 

- Accelerometers: measure the linear acceleration of a user’s head to determine 

translations. 

While head pose can thus be found rather quickly, inertial sensors suffer from 

accumulation errors over time that can adversely affect registration stability. 

 

2.4 Vision-based Registration Approaches 
 

In comparison to sensor-based techniques, vision-based techniques have experienced 

significantly better results when attempting to achieve the high-precision requirements of 

the registration process.  This section describes some of the proposed solutions, along 

with some of the limitations and challenges that must be overcome. 
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2.4.1 Tracking Known Patterns 
 

The pattern-based ARToolkit technology developed at the University of Washington, 

which can augment virtual objects onto predetermined black and white square markers, is 

used in [BILL01a, BILL01b, KATO00a, KATO00b, REGE01].  The technology first 

thresholds the captured frame into a binary image.  Black regions that can be fitted by 

four lines are then normalized so that they are front facing and square.  These normalized 

images are then matched against known pattern templates, and if a match is found the 

region is marked as being identified.  Once identified, the position and orientation of the 

pattern is determined with respect to the camera.  Once the pose has been determined, 

any virtual objects associated with the identified pattern are augmented into either the 

original video frame or optically in an HMD.  Figure 2.6 shows some examples of the 

ARToolkit technology. 

 
Figure 2.6 – ARToolkit augmentation [KATO00a]. 

 

The advantage of the ARToolkit technology is its simplicity and performance.  It can 

operate at interactive frame rates on consumer-level PCs using off-the-shelf USB camera 

hardware.  Fast movements do not pose any major problems due to the global image 

processing performed on each frame.  However, the simplicity comes at the expense of 

robustness.  Any occlusion of any part of the pattern in the video frame results in a loss of 

augmentation (since the line-fitting process fails).  Therefore, attempting to view 

augmented objects close-up is not possible since portions of the marker may be out of 

view.  Further, any attempts at manipulating the virtual objects (via hand gesture 

recognition or haptic input devices) would also not be possible since the manipulation 
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device would occlude the pattern.  Additionally, intrinsic calibration is considered to be a 

separate step that must be performed before a particular camera can be used with the 

system.  Only extrinsic (pose) parameters are determined at run-time based on the 

orientation of the pattern in the video frame. 

 

Similar to the ARToolkit technology, [REKI98] tracks black and white 2D matrix 

markers that can be attached to real-world objects, onto which text or virtual 3D objects 

can be augmented.  A similar normalization/unwarping process is employed in order to 

recognize the pattern in the video image.  Unlike ARToolkit, however, the choice of 

pattern is restricted to a square shaped barcode arrangement.  This allows the 

augmentation system to recognize 216 unique patterns onto which different objects can be 

overlaid.  Figure 2.7 shows an example of a 2D matrix marker and its unwarped 

equivalent from a video frame. 

 
Figure 2.7 – (a) Original 2D matrix pattern, (b) 2D matrix restored from video 

[REKI98] 

 

Patterns consisting of black and white circular patches of dots, where the dots are 

arranged along a major and minor axis, are tracked in [MOLI01].  By restricting the 

arrangements, patterns are unambiguously detected and pose computations are simplified.  

Valid dot arrangements are determined by treating them as vertices in a graph and finding 

a minimum spanning tree between them.  While coloured dots are useful for pattern self-

identification, they are adversely affected by changes in lighting, camera quality, and dot 

orientation.  Pose is estimated in an orthoperspective (similar to weak-perspective) space 

by using three successfully tracked non-collinear points. 

 

Their implementation achieves interactive frame rates (15-30 Hz), and can handle brief 

partial occlusion of the markers by predicting motion via Kalman filtering.  However, 

while circular patch finding is relatively efficient, the centroid computation of circular 
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patches can vary from frame to frame due to image noise.  Thus this method may suffer 

from significant jitter.  Additionally, the authors note that approximation of perspective 

using an orthoperspective projection can experience up to 10 degrees of angular error 

when viewing objects at close range. 

 

In a similar fashion, [VALL98] uses an affine coordinate system which doesn’t require 

any Euclidean calibration of the video camera to perform augmentations.  Rectangular 

blobs arranged on two orthogonal planar patterns are tracked in real-time, and lines are 

fitted to these regions to extract four corner points.  These four corners are then used to 

create an affine projection matrix that can be directly used to augment virtual objects onto 

the pattern. 

 

Similar to the ARToolkit method, this approach does not offer any robustness to 

occlusion; no affine projection matrix is computed if the system detects less than the 

required number of features.  Additionally, the affine augmentations are only realistic 

when the depth difference between the nearest and farthest feature points is small 

compared to the focal length of the camera lens. 

 

2.4.2 Tracking Natural Features 
 

A system that tracks markerless planar regions in natural environments is described in 

[SIMO00].  This is a special case which works well in indoor environments consisting of 

textured ceiling tiles or floors, as well as in outdoor environments with rough ground 

textures (such as grass).  Additionally, their approach can “hand off” tracking from one 

plane to another, such that the same plane need not be visible throughout the video 

sequence.  The key to their approach involves robustly computing a homography (a 2D-

2D transformation) between feature points from one frame to the next.  The homography 

can then be used to extract extrinsic calibration parameters since the planar region 

imposes a natural frame of reference.  Further, they describe an estimation scheme for the 

intrinsic parameters if they are unknown. 
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Unfortunately, this approach requires the detection of hundreds of corner features in 

every frame of video, as well as correlating these features between frames in order to find 

feature correspondences for the homography computation.  Thus the tracking is 

extremely robust to noise and occlusion, but the overall approach is not suited for real-

time performance on current consumer-level hardware. 

 

Motion is tracked in natural environments by estimating optical flow of both feature 

points and entire regions in [NEUM99, YOU99b].  Their approach is used in 

combination with inertial and vision-based trackers in order to increase precision.  

Unfortunately, the algorithm currently does not operate in real-time and requires a 

separate intrinsic camera calibration step. 

 

A stereo camera configuration is used in [KANB01] in order to track natural features for 

augmentation purposes.  Their system first estimates a projection matrix by viewing a set 

of pre-defined fiducial markers.  The projection matrix is then updated as a user moves 

around in the environment by picking up on natural features (such as corners or edges) 

that can be easily matched between the stereo (left/right) images.  The use of stereo is 

both an advantage and disadvantage.  On the one hand, epipolar constraints [XU96] can 

be used to determine whether feature points in the left/right images correspond, and the 

3D positions of the feature points can be computed using stereo triangulation techniques.  

On the other hand, their stereo camera configuration requires expensive hardware, and 

the cameras require performing a separate intrinsic camera calibration procedure. 

 

2.5 Hybrid Registration Approaches 
 

Some researchers have concluded that sensor-based techniques alone will never work 

well enough to be the only tracking technology for augmented reality, due to the 

inaccuracies and latencies they exhibit.  Therefore, the most promising approach may be 

to use sensors to grossly estimate the pose, followed by vision-based techniques to fine-

tune the registration process [VALL98].  The idea is to combine the strengths of multiple 

approaches in order to overcome the respective weaknesses. 
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2.5.1 Magnetic and Vision 
 

Optical and magnetic tracking for the Studierstube project is discussed in [AUER99, 

AUER00].  The system is able to track the corners of black rectangles on a white 

background, the locations of which have been determined in a prior calibration 

procedure.  The magnetic tracker is then used to roughly estimate the positions of these 

corner features.  The predicted corner locations are then given to the optical tracker, 

which places a 5x5 subwindow around the predicted feature location.  After performing 

subpixel corner and edge detection as defined in [BRAN99], the final position of the 

corner feature is determined.  Camera pose is then determined based on the 2D positions 

of the features in image space and the known 3D positions in the world coordinate space.  

Note that the intrinsic camera parameters are determined in a separate calibration 

procedure.  

 

The system performs at interactive frame rates, with position jitter between 0.4mm to 

2.7mm.  Since the pose estimation only requires four successfully tracked feature points, 

the system is also robust to partial occlusions of the tracked pattern. 

 

In a similar fashion, [STAT00] combines magnetic and vision-based tracking in order to 

achieve robust 3D augmentations.  The vision-based tracker first attempts to locate two-

colour circular blobs consisting of an inner circle and outer ring, where the diameter of 

the outer ring is three times larger than the diameter of the inner blob.  Four fluorescent 

colours (red, green, blue, yellow) are used, resulting in a maximum of twelve possible 

unique landmarks.  When three or more non-collinear landmarks are visible, the 

computed centroid positions are used to determine the pose of the camera.  Intrinsic 

camera parameters, however, are determined in an independent calibration procedure.  

The computed head pose is then fed to the magnetic tracker in order to determine the 

amount of error in the magnetic tracker’s estimated pose.  Assuming temporal coherency, 

this error amount is then used to predict head pose in the next frame.  Thus in the next 
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frame, the predicted head pose from the magnetic tracker is fed into the vision-based 

tracker in order to find more landmarks in local search areas.   

  

Compared to single-colour blob finders, the use of two-coloured landmarks makes the 

system robust to invalid marker detection.  Additionally, blob finding in general is much 

quicker than complicated edge or corner finding algorithms.  Further, the use of two-

coloured blobs makes the system robust to partial occlusions since the entire blob 

position and size can be estimated with only a portion of a blob visible. 

 

The prediction mechanism allows the augmentation system to continue functioning even 

if some or all of the landmarks are briefly occluded, as opposed to breaking down 

completely. Experimental results show that position and orientation errors of this hybrid 

tracker are typically less than 2mm and 0.2°. 

 

The major disadvantage with this blob scheme is the limitation to twelve unique patterns.  

Scalability is a concern since increasing the number of uniquely detectable colours is a 

difficult task due to colour thresholding limitations and varying camera qualities.  For 

example, trying to detect an orange blob would cause problems with red and yellow blob 

detection since the RGB components are similar. 

 

The ARQuake project described in [THOM00] uses a combination of magnetic tracking, 

a global position system (GPS), and vision-based marker tracking in order to present an 

augmented reality version of the popular Quake video game.  The GPS and magnetic 

tracking system is used for augmentations at large outdoor distances from the user (> 

50m), since GPS precision is rather coarse for close-up augmentations.  For closer 

augmentations (such as when navigating indoor environments), the system makes use of 

the ARToolkit library [KATO00a].  Throughout the indoor environment, variable sized 

black and white patterns (ranging from 19cm x 19cm to 1m x 1m) are placed in strategic 

locations in order to recreate a common coordinate system for the Quake 3D world.  
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The AR2Hockey augmented reality air hockey game [OHSH98] also uses a hybrid 

magnetic and vision system for tracking purposes.  Similar to the previously mentioned 

approaches, the magnetic sensor is used to predict user motion while the vision system 

tracks visual landmarks in order to refine the estimated pose. 

 

2.5.2 Inertial and Vision 
 

An inertial and vision augmentation system is described in [YOU99a].  Inertial data is 

used to determine approximate 2D feature motion, and vision-based feature tracking then 

refines these estimates by performing local searches in order to determine the true feature 

positions.  In this way, the gyro data increases the robustness and performance of the 

vision-based tracker, while the vision system corrects for the accumulated drift of the 

inertial system.  A similar system is described in [KANB01], but using a stereo camera 

configuration instead of a single camera in order to improve robustness. 

 

2.6 Calibrated vs. Uncalibrated Registration 
 

The majority of augmentation systems described in the previous sections relied on 

manual calibration procedures to determine the intrinsic camera parameters, followed by 

various 3-point [MOLI01, STAT00] or 4-point [OBER93, STUR00] pose estimation 

techniques to determine the extrinsic parameters.  

 

The problem with manual intrinsic calibration is the lack of support for zoom lenses, 

since the focal length changes.  To address this problem, [SIMO99] proposes a method to 

detect camera motions and zoom variations in a video sequence (between two 

consecutive frames).  Assuming that zoom and camera motion do not occur in the same 

frame, their algorithm is able to perform precise registrations in each separate case.  If 

camera motion is detected, the system assumes the focal length is constant and thus can 

use a 3-point or 4-point pose estimation algorithm for the extrinsic parameters.  On the 

other hand, if zoom is detected, the system only needs to determine new intrinsic 

parameters based on the positional change of tracked 2D/3D feature correspondences.  Of 
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course, this assumes that the initial intrinsic parameters are known at startup time.  

Additionally, since focal length will be progressively adjusted during zoom detections, 

there is the potential for accumulation error. 

 

Recently, computer vision researchers have been experimenting with semi-automatic 

calibration techniques that can be exploited by augmented reality systems.  An algorithm 

that can recover both intrinsic and extrinsic parameters by tracking known quadrangular 

targets is described in [ABID00].  A semi-automatic technique that can recover camera 

parameters from a homography by tracking a known planar pattern is also described in 

[ZHAN00].  Similarly, [SIMO00] uses a homography to estimate the intrinsic and 

extrinsic parameters when tracking planar structures in natural environments. 

 

Some researchers have also been experimenting with completely uncalibrated registration 

for augmented reality.  Affine object representations for a real-time augmentation system 

are described in [KUTU98, VALL98], and thus do not require an explicit Euclidean 

calibration of the camera.  Therefore, virtual objects can be registered by directly 

applying a computed 3x4 orthographic projection matrix.  As described earlier, the 

disadvantage of this approach is the lack of realistic perspective distortion on the virtual 

objects when objects are observed close-up.  Additionally, the lack of a proper 

perspective space limits the systems ability to accurately handle traditional computer 

graphics effects such as lighting and texture mapping on the virtual objects. 

 

Building upon the work in [KUTU98], [SEO00] presents an algorithm for computing a 

perspective projection matrix without explicit Euclidean camera calibration.  The 

technique is based upon projective reconstruction, which involves determining the 

fundamental matrix [XU96] between two images in a video sequence in order to 

reconstruct the 3D position of tracked 2D feature points.  The downfall with this 

approach is the time-consuming fundamental matrix computation that occurs between 

every pair of consecutive video frames. 
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For some applications, intrinsic and extrinsic camera calibration may not be required at 

all.  Consider annotating real-world objects with simple 2D text or graphics.  In these 

cases, accurate 2D tracking of planar patterns would be sufficient since a homography 

would precisely define a mapping from the 2D pattern space to the video frame, with 

automatic support for zoom lenses. 

 

2.7 Open Problems 
 

While a variety of solutions to the registration problem have been proposed in the 

augmented reality literature, none fully address all the requirements of a robust system 

that is ready for consumer-level products.  Some systems provide excellent stability and 

robustness of registration, but require sophisticated calibration steps and expensive 

hybrid tracking equipment.  Other accurate vision-only registration approaches work with 

low-cost hardware, but the computational costs currently don’t allow interactive frame 

rates.  Still others achieve real-time performance on low-cost hardware, but at the 

expense of stability and robustness.  As can be seen, the various approaches all establish 

their own balance between cost, performance, and accuracy based on application-specific 

requirements. 

 

The ultimate goal of augmented reality is to provide seamless integration of virtual 

objects with natural, unprepared environments.  Additionally, this integration should be 

automatic and reliable in a wide variety of lighting conditions and at various distances 

and user orientations, with the ability to interact with the virtual imagery.  This requires 

solutions to many open problems, particularly in automatic calibration systems and 

tracking in arbitrary environments [AZUM01].  No system has addressed all of the 

requirements of the ideal augmented reality environment, but progress is being made in 

each of the problem domains.  Clearly, an evolutionary rather than revolutionary 

approach is required to bring AR out from the research labs and into mainstream 

products. 
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Chapter 3 
 
Planar Homographies for Registration 
 
 
This chapter discusses planar homographies and how they relate to the registration 

problem.  A basic overview of the mathematics behind homographies is first provided, 

followed by a description of how they can be used for 2D augmentations.  An existing 

method to estimate all intrinsic and extrinsic camera parameters from a homography is 

then described, which allows our 3D augmentation system to autocalibrate itself.   

 

3.1 Mathematical Background 
 

For pattern-based augmented reality, a planar pattern defines a world coordinate system 

into which virtual objects will be placed, as depicted in Figure 3.1.  It would be 

convenient if the planar pattern itself could be used to determine a projection matrix that 

could be directly applied to the coordinates of a virtual object for augmentation purposes.  

This would eliminate the need for a separate complicated calibration procedure, thus 

simplifying the system for the end-user. 

 
Figure 3.1 – World coordinate system induced by a planar pattern 

Camera coordinates

Image coordinates 

Pattern coordinates

Pattern plane 

Image plane 
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If we make the assumption that the planar pattern defines the Z=0 plane in world space, 

we note the following simplification when projecting points on the planar pattern into 

image space  
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where pij defines the i,j-th element of the perspective projection matrix described earlier, 

and H is a 3x3 2D-to-2D projective transformation known as a homography [ZISS00]. 

 

In other words, we have 
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Equation 3.1 – 2D-to-2D projective transformation 
 

where x = (x, y) is a point in the original plane, x΄ = (x΄, y΄) is the corresponding point in 

the image, and λ is a scale factor.  

 

We can rewrite the equation as 
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where hij defines the i,j-th element of H.  This can be further rewritten as two linear 

equations 
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In matrix form we have 
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where h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]T is a 9-element vector containing the 

elements of H. 

 

Therefore with four such non-collinear point correspondences, we can solve for all the 

elements of H as follows 
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The solution h is thus the null-space of the 8x9 matrix A, which can be solved using 

known methods such as singular value decomposition [TRUC98]. 

 

3.2 Uncalibrated 2D Augmentations 
 

Assuming that four pattern to image point correspondences can be made (so that H can be 

computed), augmentations of 2D objects onto the plane are possible.  Equation 3.1 

describes the required mapping that needs to be made in order to convert 2D locations on 

the planar pattern into the appropriate 2D locations in a frame of video.   

 

Therefore, given a texture-mapped 3D polygon defined relative to the plane, with Z=0 for 

all vertices, the polygon could be transformed into the image with proper perspective 

distortion.  Virtual video screens, 2D board games, and textual overlays can be achieved 

automatically without the need for a manual calibration procedure.  Figure 3.2 shows an 

example of a 2D image being augmented onto a planar pattern. 
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Figure 3.2 – Uncalibrated registration of a 2D video image 

 
3.3 Camera Parameter Estimation and 3D Augmentations 
 

Unfortunately, H alone cannot be directly used to augment virtual 3D objects into the 

image, since the Z component from pattern space is assumed to always be zero.  

However, recent work in [SHIM98, ZHAN00] involving planar homographies and 

camera calibration can be used to recover the missing camera parameters.   

 

Since H is a simplification of the general perspective projection matrix from Equation 

2.10 (where Z=0), it is clear that H can be defined as 
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Equation 3.2 – H as a simplified projection matrix 

 

Since R is a rotation matrix, its orthogonality properties give 
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Combining Equation 3.5 with the representation of H in Equation 3.2 above results in 
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Similarly, Equations 3.3 and 3.4 provide 
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By eliminating λ2 in Equations 3.7 and 3.8, we get 
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Using Equations 3.6 and 3.9, we can solve for both fu and fv 

 

)()(
)()(
2
32

2
312221

2
22

2
213231

2
12

2
112221

2
22

2
211211

hhhhhhhh
hhhhhhhhfu −+−−

−−−
=  (Equation 3.10) 

)()(
)()(

2
32

2
311211

2
12

2
113231

2
12

2
112221

2
22

2
211211

hhhhhhhh
hhhhhhhhfv −+−−

−−−
=  (Equation 3.11) 

 

Once the intrinsic parameters (the focal lengths) have been computed, Equation 3.7 or 

Equation 3.8 can be used to compute the value for λ.  For example, using Equation 3.7 

we have 
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All of the extrinsic camera parameters (Equation 2.8) can then be computed as follows 

ufhr /λ 1111 =  

vfhr /λ 2121 =  

3131 λhr =  

ufhr /λ 1212 =  

vfhr /λ 2222 =  

3232 λhr =  

2231322113 rrrrr −=  

3211123123 rrrrr −=  

1221221133 rrrrr −=  

ufht /λ 131 =  

vfht /λ 232 =  

333 λht =  

 

Note that r13, r23, and r33 are found by using the fact that the Z axis of the rotation matrix 

is orthogonal to the other two. 
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As a result of recovering both the intrinsic and extrinsic camera parameters, virtual 3D 

objects can be augmented onto the planar pattern in image space, under full perspective, 

without the need for a separate manual calibration step (see Figure 3.3).  In other words, 

the homography can be used to autocalibrate the camera, which provides us with a full 

perspective projection matrix.  Once we have the camera projection matrix we can then 

use it to render, in a perspective-correct manner, the 3D coordinates of any virtual 3D 

object that is defined in pattern space (i.e. relative to the centre of the pattern in Figure 

3.1).  Figure 3.4 shows some additional examples of the 3D augmentation.  Note that we 

did not need to know anything about the camera parameters a-priori to compute the 

homography, or to compute the projection matrix.  All that is required is a method to 

determine reliable correspondences between pattern space and image space in a real-time 

video sequence.  This is the focus of Chapter 4. 

 

 
 

Figure 3.3 – Automatically calibrated 3D augmentation examples (a) virtual 
pyramid, (b) virtual cube. 

(a)

(b)
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Figure 3.4 – Automatically calibrated 3D augmentation of two checkered cubes 

viewed from different viewpoints. 
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Chapter 4 
 
Robust 2D Pattern Tracker Design 
 
 
Chapter 3 described the basic augmentation system under the assumption that a set of 

valid correspondences between some planar pattern and image space could be found.  

This chapter proposes a tracking system that can be used to establish such 

correspondences.  The two modes of the tracking system are first described, showing how 

a known pattern can be extracted from a frame of video and then tracked in subsequent 

frames.  This is followed by a description of how the tracker facilitates the computation 

of accurate homographies.  The chapter concludes by describing how the proposed 

system fulfills the five robustness criteria outlined in Chapter 1. 

 

4.1 Defining a Pattern 
 

The patterns used in our augmentation system consist of a thin white square border, 

inside of which is a thick black box consisting of any number of black or white corner 

features.  For each pattern, a list of (x, y) coordinates representing the associated corner 

features is also generated.  While any scale could be used for the X and Y axes of the 

pattern coordinate space, for convenience they should be in some metric units based on 

the size of the pattern as it would appear when printed on a sheet of paper.  Additionally, 

the origin of the coordinate system should correspond to the centre of the pattern.  As a 

result, the actual size of the pattern image in pixels is unrelated to the defined coordinate 

system.  For our system, patterns are 64x64 pixels which provide enough space to define 

a sufficient number of features while only requiring a few kilobytes of run-time memory 

space.  Figure 4.1 shows an example of a 64x64 pattern used by the system, with the axes 

of the metric coordinate space overlaid on top.   
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Figure 4.1 – Example of a 64x64 black and white pattern with corner features. 

 

Since the pattern will ultimately be used to extract orientation information for 

augmentation purposes, it is important to assure that the arrangement of features within 

the black box of the pattern is asymmetric.  In other words, if the pattern is rotated in 90 

degree increments, its current orientation should be unambiguous.  Since each pattern 

will be associated with a unique virtual object, the pattern should also be unambiguous in 

comparison to other patterns at each of the four orientations. 

 

4.2 Tracking System Overview 
 

Figure 4.2 shows the basic flow of the robust tracking system.  The system starts in 

Search Mode, which involves using binary vision techniques over an entire frame of 

video in order to find valid patterns.  This is followed by Tracking Mode, which allows 

fast and robust localized corner tracking of a pattern’s individual features from frame to 

frame.  Finally, if a valid pattern is being tracked, a homography is computed using the 

set of corner correspondences from pattern space into image space.  The camera pose is 

then computed as discussed in Chapter 3 and the appropriate virtual 2D or 3D object that 

is associated with the tracked pattern is augmented onto the plane in the frame of video.  

Upon tracker failure, the system reverts back to Search Mode so that patterns can be 

detected again.  The details of the system will be described in the following sections. 
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Figure 4.2 – Basic flow of the tracking system 

 
4.3 Search Mode 
 

Before individual corner features can be tracked from frame to frame, the system must be 

able to decide which pattern, if any, is in the frame of video. 

 

4.3.1 Candidate Region Detection 
 

Many researchers have proposed using black and white planar patterns for augmented 

reality since features are defined using the highest contrast possible [REKI98, 

KATO00a].  Additionally, these high contrast features are extremely simple to extract 

from a frame of video using well-known binary image processing techniques [RUSS95].  

Colour features, on the other hand, are prone to detection errors when attempting to 

achieve compatibility on a wide variety of low-cost cameras [MOLI01].   
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Binary Quantization 

 

Therefore, in order to detect a potential pattern in a frame of video, we must first perform 

a binary quantization of the image.  Figure 4.3a shows a pattern as it appears in a colour 

frame of video, and Figure 4.3b shows the same frame after binary quantization.  Clearly, 

the black and white features have been preserved quite well, which is important for 

further extraction purposes. 

 

 
 

Figure 4.3 – (a) Original frame of video, (b) frame of video after binarization 
 
Converting a colour image into a binary image is a trivial task.  In our system, each frame 

of video is first scaled into a 320x240 image and then transformed into a grayscale image, 

such that each pixel has a value between 0 (black) and 255 (white).  This grayscale image 

is then quantized into a binary image as follows: 
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where PB(x,y) is the (x,y) pixel intensity in the binary image, PG(x,y) is the (x,y) pixel 

intensity in the grayscale image, and T is the desired threshold value between 0 and 255. 

 

While a fixed threshold value may work quite well, dynamic thresholding methods exist 

that allow the binary quantization system to adjust the T value based on changing scene 

conditions.  The simplest approach involves generating a histogram from the grayscale 

image, and then analyzing it for the minimum and maximum intensity peaks.  The 

(a) (b) 
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threshold T is then chosen to be the value between these two peaks.  The assumption is 

that we would like the brightest pixels in the image to be categorized as white, and the 

darker pixels as black.  Figure 4.4a shows an example of a grayscale scene, its associated 

histogram and T value, and the resulting binary image.  The same scene under reduced 

lighting is shown in Figure 4.4b, showing the similarity in the final resulting binary 

image when using dynamic thresholding.  Using a fixed threshold value, the binary image 

under reduced lighting is significantly different from the binary image under normal 

lighting. 

 

 
 

Figure 4.4 – Dynamic binary image quantization via histograms (a) under normal 
lighting using histograms, (b) under reduced lighting (left image is original, middle 

image is with dynamic threshold, right image is with fixed threshold). 
 
Connected Region Analysis 

 

Once a binary image has been generated it must be analyzed for potential pattern areas.  

Since we know the original pattern consists of a thin white border inside which is a thick 

black area, we must search for large connected regions of black pixels in the binary 

image.  This can be accomplished using well-known flood-fill techniques from computer 

graphics as follows: 

� Scan the entire image for black pixels, starting at the top-left of the image and 

scanning each pixel row-by-row. 

(a)

(b)



 

 

48

� For each detected black pixel, mark it as scanned and set a bounding box around 

it. 

� Recursively scan the eight neighbouring pixels for black, marking each one as 

being scanned and adjusting the bounding box accordingly. 

� Once no more neighbouring black pixels can be found during the recursive step, 

label the computed bounding box as containing a region. 

� Continue scanning the image pixels row by row. 

 

In order to reduce further processing of invalid regions, we may apply the following 

simple heuristic checks: 

1) If the bounding box around the region of connected pixels is smaller than some 

predetermined threshold, reject the region under the assumption that it may 

simply be a set of spurious black pixels.  If the region actually is a valid pattern, 

the threshold states that the pattern may be too far from the viewer to provide any 

useful augmentations. 

2) If the aspect ratio of the bounding box is below some predetermined threshold, 

reject the region under the assumption that it may be a long strip of spurious black 

pixels.  If it turns out that it actually is a valid pattern, chances are that the plane is 

being viewed at an extremely sharp angle such that augmentations would 

eventually fail in later processing. 

 

4.3.2 Convex Hull Fitting 
 

Each candidate region thus far only consists of a set of pixels in an image and an 

associated bounding box.  Ideally, we would like to fit a tight convex hull around the 

region that geometrically defines the region in the image. 

 

We know that each correct pattern in the binary image will consist of a thick black 

border.  Therefore, the best convex hull would consist of four points located at the 

corners of the candidate region.   
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Figure 4.5 shows some sample profiles of black image features in binary images.  As can 

be seen, edges typically consist of approximately 50% black and 50% white pixels, while 

corners have more than 50% white pixels. 

 

 
 

Figure 4.5 – Black image features in a binary image.  (a)-(d) edges, (e)-(h) corners. 
 
By slightly modifying the connected region algorithm in the previous section, a fast and 

simple heuristic approach can be used to detect the four strongest black corners for each 

candidate region.  For each detected black pixel, we compute the following: 

C(x,y) = NW(x,y,S) / S2 

where C(x,y) is a number between 0 and 1 representing the black corner strength of the 

(x,y) pixel.  Here NW(x,y,S) returns the number of neighbouring white pixels for the (x,y) 

pixel in a local SxS search window.  A typical window size for S is 9 for 320x240 

images.  The algorithm runs in O(NS2) time, where N is the number of pixels to be 

scanned. 

 

By keeping track of the four highest scoring black corner pixels, we can quickly 

determine the vertices for the tightest fitting four-sided convex hull around any candidate 

region.  After the four strongest corners for any candidate region have been determined, 

they can then be processed by a fast O(NlogN) convex hull computation routine in order 

to guarantee a clockwise or counter-clockwise vertex ordering [DEBE99]. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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4.3.3 Region Normalization 
 

Now that the tightest fitting convex hull has been fitted to each candidate region, a final 

decision must be made as to whether the region is a valid pattern or not.  Similar to the 

method outlined in [REKI98], the candidate region is unwarped such that it is front-

facing, and then an image comparison with the set of known patterns is performed. 

 

Fortunately, using our knowledge of homographies from Chapter 3, this proves to be a 

trivial task.  Given the 4-sided convex hull in image space that was discussed in the 

previous section, a set of vertex correspondences between the convex hull and the known 

2D coordinates of the original patterns can be made.  These correspondences can then be 

used to solve for H, which represents a 2D-to-2D mapping from the original pattern plane 

into the detected planar region in image space.  H can then be used to generate a 

normalized (unwarped) image as follows: 

 
For each pixel location p = (x,y) in the original pattern image IP

Compute p’ = H p
Get the pixel intensity at p’ in the binary video frame IB
Store this pixel intensity at p in the normalized image IN

 
This results in a new image IN of the same dimensions as the pattern image IP, but 

consisting of pixels from the binary video frame IB such that the detected region defined 

by the convex hull is now front facing (perspective distortion and orientation are 

removed).   

 

Before the normalized image can be matched with the set of known patterns, orientation 

must be taken into account since the order of the convex-hull vertices do not necessarily 

correspond with the original pattern vertices.  For example, Figure 4.6a shows a captured 

video image, and Figure 4.6b shows the normalized region.  Notice that the vertices v0΄, 

v1΄, v2΄, and v3΄ as computed by the convex hull do not map directly to the correct 

vertices of the original pattern in Figure 4.6c.  The correct mapping should actually be v0΄ 

→ v1, v1΄ → v2, v2΄ → v3, and v3΄ → v0.  To guarantee that the proper orientation is 
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found, four different homography computation and normalization procedures must be 

computed, one for each mapping. 

 

 
 

Figure 4.6 – Region orientation and vertex ordering of the convex hull.  (a) 
Captured video frame, (b) Normalized region and vertex ordering, (c) Original 

pattern vertex ordering. 
 
4.3.4 Pattern Identification 
 

Now that a candidate pattern region has been identified in a video frame and has been 

normalized to be front facing, a final determination can be made as to whether this region 

contains a valid pattern or not. 

 

Given a normalized region image IN as computed in the previous section, a correlation 

score can be computed with each original known pattern IP as follows: 
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where i represents a pixel location, and w and h represent the width and height of the 

pattern images respectively (in our case w, h = 64).  In other words, we determine a score 

based on summing the absolute difference between pixel intensity values.  Since both 

images are binary (black or white), we can use the exclusive-or operator to compute the 

absolute difference.  In this case, a lower score represents a better match, and a zero score 

means the images are identical.  A threshold is used to decide on whether this correlation 

operation has produced a match or whether the region should be rejected. 

 

The end result of the correlation operation is an association between each original 

candidate region in screen space and the best matching known pattern in pattern space (if 

any). 

 

v0΄ v1΄ 

v2΄ v3΄ 

v0 v1 

v2 v3 
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4.4 Tracking Mode 
 

The previous section outlined a fast approach to self-identifying known planar patterns in 

a frame of video.  Existing methods proposed in [REKI98] and [KATO00a] consider this 

to be sufficient in order to begin augmenting virtual objects onto the pattern.  In other 

words, camera parameters can be extracted from the homography that was computed for 

region normalization purposes, and 3D objects can now be augmented (as discussed in 

Chapter 3).  The advantage of this approach is the simplicity of the system.  However, as 

soon as any portion of the planar region is occluded (by the extents of the screen or by a 

foreground object, for example), the detection process completely fails.  For interactive 

augmented reality this is completely unacceptable, since we will eventually want to 

manipulate virtual objects using hand gestures or pointing devices. 

 

This section proposes an efficient corner tracking algorithm which allows continued 

pattern tracking in the presence of significant occlusion.  The basic idea involves tracking 

the known corner features for a detected pattern from frame to frame, and robustly 

computing the homography for the planar pattern based on these interior corner features, 

instead of simply relying on the four outside corners of the black pattern border.  

Additionally, since local features are tracked from frame-to-frame, an increase in 

performance can be expected. 
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4.4.1 Coarse Corner Prediction 
 

The first stage of Tracking Mode, as depicted in Figure 4.2, consists of corner location 

prediction using the homography computed in the previous frame.  If the system was 

previously in Search Mode, this homography is the one used to normalize the planar 

region. 

 

Using this previous homography H, all known corner positions ix  for the detected 

pattern are transformed into the current image space.  Assuming temporal coherency, 

first-order prediction is used to translate the transformed position by an amount equal to 

any motion that corner experienced between the previous two frames. 

 

In other words, a predicted location ix̂  is determined for each corner as follows 

tvH i ∆+= ii xx̂  

where vi is the current velocity of corner i, and ∆t is the time elapsed since the last frame. 

 

Each of these predicted corner locations are inaccurate due to small errors in the 

homography as well as due to unexpected camera or pattern motion since the last frame.  

Figure 4.7 shows an example of a set of predicted corners using the previous homography 

where the actual corners in the current frame have moved slightly. 

 
Figure 4.7 – Corner prediction.  The left image shows the predicted corners for a 
scene using the previous frame’s homography.  The right image shows a zoomed 

view of the yellow area in the left frame.  The green crosshairs represent the 
predicted locations, and the yellow squares represent the actual corner locations. 
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4.4.2 Subpixel Corner Detection 
 

In order to find the actual corner positions for each of the known pattern corners ix  in the 

current frame, a local search window W is placed around each predicted corner location 

ix̂ , and the actual corner 'ix  must be in this window.    Using a reliable corner finding 

algorithm with subpixel precision (see Appendix A), the strongest corner 'ix  is then 

extracted from this search window and a correspondence ix  ↔ 'ix  is made.  If no corner 

is detected, the corner feature i has its tracking status marked as having failed for this 

frame.  This could occur due to the corner being off the edge of the screen or temporarily 

occluded. 

 

Note that extracting the strongest corner may not always be the best heuristic since 

ambiguities may occur when the search window overlaps more than one valid corner, as 

depicted in Figure 4.8.  Another heuristic is to choose the corner in the search window 

that is closest to the predicted location.  However, this still does not always guarantee that 

the correct corner will be chosen.  A more sophisticated solution was presented in 

[BRAN99], whereby neighbouring corner positions and edge properties from the original 

pattern are taken into account to determine the best corner location.  Another approach 

involves computing a cross-correlation between a corner’s current and previous frame 

search windows, but this is computationally too expensive for real-time performance. 
 

 
Figure 4.8 – Multiple potential corners in a single search window. 

 
The search window size defines how much pixel movement the tracker can tolerate from 

frame to frame, assuming smooth motion.  A large search window allows for more 
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movement, but increases the chances of multiple corners being found in the search box.  

Conversely, a small search window size reduces the chance of multiple corners, but 

increases the chance of tracker failure due to rapid motion.   

 

In order to account for these discrepancies, we use a dynamic search window in the 

pattern which changes size in proportion to the area occupied by all the corner features.  

In other words, if the pattern is determined to be far from the viewer (small pattern area), 

reduce the search box size under the assumption that 1) significant motion of the pattern 

has a smaller effect in screen space, and 2) corners in the pattern will be closer together.  

If the pattern is found to be close to the camera (large pattern area), increase the search 

box size since the chance of multiple corner detections is lower and pattern motion has 

more effect in screen space. 

 

In our experiments we found that when the pattern covers approximately 25% of the pixel 

area in our 320x240 images, a 20x20 search window allows for a sufficient amount of 

movement while still allowing corners to be determined unambiguously.   

Thus the following simple scaling approach can be used to compute the dynamic search 

window dimensions 

 

 

where B represents the bounding box, in screen space, around the predicted corner 

locations. 

 

The next section discusses how the set of accurate corner correspondences that were 

found are used to compute a robust homography for subsequent tracking and 

augmentation purposes. 
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4.4.3 Homography Updating 
 

Using the well-known RANSAC approach for robust estimation [FISC81, SIMO00], a 

new homography for the set of accurate corner correspondences {x ↔ x΄} is determined 

as follows: 

 

� Randomly sample four non-collinear x ↔ x΄ correspondences. 

� Compute H from the random sample. 

� For all correspondences, compute the distance between x΄ and Hx. 

� Count the number of pairs for which the distance is below some threshold.  A 

value between 2.0 and 4.0 works well for our system.  These correspondences are 

considered our inliers, and the rest are labelled as outliers. 

� Store the H which has the highest number of inliers IH. 

� Refit the homography H using these inliers. 

 

The motivation behind random sampling is to remove inaccurate or mismatched corner 

locations from the homography computation.  This allows the homography to be robust to 

partially occluded features, which is important for subsequent corner predictions and 

stable augmentations. 

 

The number of random samples is capped at the maximum number of known corners Imax 

for the detected pattern.  Most of our patterns consist of four to eight white rectangles, 

resulting in 16 to 32 corners.  In order to reduce the number of samples further, random 

sampling stops if the highest number of inliers IH is above the following threshold 

maxQH ITI ≥  

where TQ defines a quality measure between 0 (low) and 1 (high).  A value above 0.75 

provides relatively stable homographies. 

 

The best homography computed after random sampling is then used as the corner 

predictor in the next frame.  Note that random sampling can fail under the following 

instances: 
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� There are less than 4 non-collinear x ↔ x΄ correspondences. 

� The best computed H fails to meet our TQ criterion 

� IH falls below 4, which is the minimum number of correspondences required for 

computing H in the next frame. 

 

In such cases, the tracking system reports tracker failure and reverts back to Search 

Mode. 

 

The basic idea behind updating the homography via random sampling is to increase the 

robustness of the pattern tracker.  With multiple corners being tracked simultaneously, 

occlusions of a subset of the feature points should have little or no effect on the corner 

prediction in the next frame.  For example, if a detected pattern consisting of 24 corners 

is being tracked, the homography should still be able to predict corner positions for the 

next frame even if approximately 16 corners are currently occluded by a user’s hand.   

 

The assumption is that the other 8 corners interspersed around the pattern area are 

sufficient to accurately determine the pattern’s current orientation.  In fact, 4 unoccluded, 

non-collinear corners are all that is necessary.  The predicted locations for the occluded 

corners will still be searched in upcoming frames so as soon as the occlusion stops (i.e. 

the user’s hand is removed from the pattern) all 24 corners will be detected again. 

 

4.5 Augmentation in 2D and 3D 
 

As discussed in Chapter 3, once the homography H has been computed it can be used to 

augment any virtual 2D or 3D object onto the projection of the pattern in the video frame.   

 

Figure 4.9 shows the outline of our video see-through augmentation system.  A frame is 

captured from the video camera, and the corner tracking system is used to robustly 

compute a homography.  A perspective projection matrix is then extracted from the 

homography and then passed to the OpenGL graphics library.  OpenGL is used to render 
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the virtual 3D objects onto the original video frame.  The augmented frame of video is 

then presented to the user on either a head-mounted display or on a standard computer 

monitor. 

 
Figure 4.9 – Augmentation system outline 

 
4.5.1 Weighted Autocalibrations 
 

The camera parameter estimation formulae in Section 3.3 are directly dependent on the 

quality of the homography H.  It is possible that the computed focal lengths change 

significantly from frame to frame due to errors in the computation of H.  As a result, 

virtual 3D objects have the potential to jitter or shake, resulting in unrealistic 

augmentations.  In order to reduce this effect, it would be convenient if the estimated 

camera parameters were stabilized during the tracking phase based on the quality of the 

computed homography. 

 

For example, when a planar pattern is relatively front-facing, the computed H accurately 

defines the planar region.  At extremely sharp angles, however, the computed H may 

contain significant error since corresponding feature points are extremely close together 

or almost collinear. 

 

Since a single estimate of the camera focal length is not necessarily accurate we average 

these estimates over time as follows: 
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� Use the autocalibration formulae from Chapter 3 to compute the intrinsic camera 

parameters (the focal lengths in the two axes) for each frame in the live video. 

� Determine a weight for the computed focal lengths based on the current quality of the 

homography. 

� Insert the focal lengths into a list that is sorted by weight in descending order, where 

the list contains a maximum of K entries. 

� Use the entries of the sorted list to compute a weighted average of the focal lengths. 

� Use these weighted average to compute the extrinsic camera parameters using the 

autocalibration formulae of Chapter 3. 

 

The weighting factor of the focal lengths is based on the reprojection quality of the 

homography H.  Given each original pattern corner xi, the distance between Hxi and the 

predicted location xi΄ is determined.  The average of these distances gives us the 

homography’s average reprojection error, REavg, represented mathematically as 

N

H
RE

N

i
avg

∑
=

−
= 1

ii x'x
 

where N is the total number of corner correspondences.   

 

Since a good homography should give us low values for REavg, the weight assigned to 

each autocalibrated focal length is 
avgRE

1 .   

 

By averaging the focal lengths we stabilize the intrinsic parameters which would 

otherwise vary slightly with each image. This also has the effect of stabilizing the 3D 

augmentation.   

 



 

 

60

4.6 System Summary and Discussion 
 

In this chapter we presented an algorithm to detect and track planar patterns in real-time, 

with the design largely driven by the five main robustness criteria described in Chapter 1.   

 

Speed: The binary image processing techniques used in Search Mode can be performed 

on today’s consumer-level PCs at real-time rates.  However, since the system will 

normally be in Tracking Mode, this is where performance is critical.  While a corner 

finding algorithm performed on an entire image at every frame is not possible at 

interactive frame rates, the use of localized search windows allows for real-time 

performance.  The determining factor is the number of corners that need to be tracked for 

any given pattern. 

 

Self-identification: The proposed system uses binary image processing and matching 

techniques to uniquely identify planar patterns in a frame of video.  Therefore different 

patterns can be viewed in the augmented environment, and the system can determine the 

correct virtual object that should be augmented onto this pattern. 

  

Scale and orientation invariance: Once a pattern has been detected in the frame of 

video, individual corner features are tracked using dynamic-sized localized search 

windows.  Corners are naturally invariant to scale, since corners are based on intensity 

changes around a pixel.  Therefore, as long as the edges defining the corner are still 

visible, the corner will remain detectable.  Additionally, due to the use of a dynamic local 

search window size, the tracker is also tolerant of a significant amount of change in the 

orientation of the pattern. 

 

Robustness to occlusion: The use of random sampling when computing a new 

homography in Tracking Mode allows for significant occlusion of the pattern, which is 

important for when only part of the pattern is visible.  As long as four non-collinear 

corners are still being successfully tracked, augmentation of virtual objects will be 

possible.  
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Robustness to lighting: Search Mode is robust to changes in lighting due to the use of a 

dynamic threshold value for binary quantization.  In Tracking Mode, corner features are 

naturally robust to lighting changes since the corner finder looks for edge intensity 

gradients in two directions to determine corner strength (Appendix A). 
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Chapter 5 
 
Analysis 
 
 
This chapter describes the performance and stability of our tracking and augmentation 

system.  The primary goal of our work is to develop a practical system that can be used 

for interesting augmented reality applications.  For this reason we have developed an 

implementation that allows us to test the system with respect to the five robustness 

criteria described in Chapter 1. 

 

5.1 Performance 
 

One of the major design goals of our augmented reality system is real-time performance 

on standard PCs using off-the-shelf USB camera hardware.  The current implementation 

of our tracking system uses OpenGL to augment simple 2D textures and 3D objects onto 

the planar patterns at 20Hz on an Intel Pentium 3 800MHz PC equipped with an ATI 

Rage 128 Video card and an Intel CS110 USB camera.   

 

In order to obtain an accurate estimate of the Search Mode time, we modified the 

implementation to always remain in Search Mode and to use the computed homography 

to perform augmentation.   

 

The current breakdown of average processing time per frame when viewing a static 

planar pattern consisting of 24 corners and a 2D augmentation is as follows: 

 

Search Mode: 29.1ms 

Tracking Mode: 10.7ms 

Augmentation Time: 2.1ms 
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Clearly, the global search method is significantly slower than tracking 24 localized corner 

features.  However, the system is usually in Tracking Mode where performance is 

directly related to the number of corners being tracked; the more corners we have, the 

longer it takes for the tracker to operate.  Figure 5.1 shows tracking times for a set of 

patterns with varying corner counts.  As can be seen, processing time increases 

approximately linearly with respect to the number of corners that need to be tracked. 
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Figure 5.1 – Corner Tracking Performance 

 
5.2 Self-Identification 
 

An association between a pattern in a frame of video and a virtual 2D or 3D object can be 

made as long as all patterns are defined unambiguously (as discussed in Section 4.1).  

Therefore, the system is capable of recognizing different patterns and unique virtual 

objects can be augmented onto each one.  Our current implementation uses either 

randomly placed white boxes or manually placed white polygons on a black square 

background, with the positions of the boxes or shapes stored in a data file.  As a result, 

there is no accurate formula to estimate the number of uniquely definable patterns.  A 

theoretical estimate can be made, however, by setting some simple constraints on the 

arrangements of the white boxes. 

 

Let us assume that each 64x64 pattern consists of a black border that is 8 pixels wide.  

Therefore, each pattern provides a 48x48 area inside which we can define our white 

boxes.  Assume that these boxes are fixed at 12x12 pixels, and that they must be placed 
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on 12 pixel boundaries in the 48x48 area.  This provides a 4x4 grid of available slots into 

which white boxes can be placed.  In order to guarantee that the patterns are 

unambiguous at the four possible pattern orientations, we can further assume that the top-

left 12x12 box is black, the top-right is white, the bottom-right is white, and the bottom-

left is black.  Therefore we have 12 available boxes that can be coloured either white or 

black to define a unique pattern.  Figure 5.2 shows the constrained pattern arrangement, 

allowing for up to 212 uniquely identifiable patterns.   

 

 
Figure 5.2 – Constrained pattern arrangement allowing up to 212 unique patterns 

(grey boxes can be either black or white) 
 
Note that the number of available corner features that can be tracked in these 212 patterns 

varies based on the arrangement of the white boxes.  Therefore the patterns are not 

guaranteed to perform equally with respect to the other robustness criteria. 

 

5.3 Scale Invariance 
 

The major advantage in using corners for tracking is that corners are invariant to scale.  

The corner tracker can thus continue to track patterns at a large range of distances from 

the camera.  The use of a dynamic search window size for corners facilitates this process, 

since the search windows become smaller as the area occupied by the corner features in a 

particular pattern begins to shrink. 

 

Table 5.1 shows the range of scale allowed for the set of test patterns shown in Figure 

5.3.  Patterns differ in the number and/or arrangement of corner features.  Scale is 

measured based on the percentage of screen area covered by the bounding box around the 

tracked corners.  Each pattern was first recognized in Search Mode and then placed such 

that it covered approximately 50% of the view in a front-facing position.  The pattern was 

then slowly moved away from the camera until tracking failure, after which the minimum 
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percentage of occupied screen space during tracking was computed.  The process was 

repeated again for maximum scale by slowly moving the pattern closer to the camera 

instead of away from it. 

 

 
 

Figure 5.3 – Test patterns for tracking experiments 
 

Table 5.1 – Distance (scale) tracking tolerance for test patterns 
 
Pattern # of Corners Min % of Screen Max % of Screen 
Pattern A 7 1.4 102 
Pattern B 17 1.3 190 
Pattern C 20 1.6 257 
Pattern D 20 1.6 236 
Pattern E 22 1.3 275 
Pattern F 24 1.2 218 
Pattern G 40 1.5 370 
 
As Table 5.1 shows, all the patterns allowed tracking to continue when the pattern 

occupied less than 2% of the screen area.  At such small scales, however, any significant 

movement of the pattern causes tracking failure since the corner search windows are 

extremely small.  Some experiments involving pattern movement at large distances 

showed that patterns occupying at least 10% still allow significant pattern movement.  

The number of corners in a pattern does play a role when a pattern covers a large area of 

the screen, as can be seen in Table 5.1.  Pattern A, with only 7 corners, only allows the 

pattern to cover 102% of the screen area, while Pattern G allows the pattern to cover 

370% of the screen since more corners continue to be visible at this scale.  Therefore, 

increasing the number of corners does not appear to provide any significant improvement 

when viewing patterns far from the camera.  However, when viewing a pattern close to 

the camera, extra corner features that are close together are beneficial since the majority 

of the pattern is outside the visible areas of the captured image. 

 

A B C D E F G
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Currently, patterns must be visible in at least 25% of the view, with no occlusions, in 

order for Search Mode to lock onto the pattern.  This can be adjusted based on size and 

aspect ratio thresholds.  Figure 5.4 shows the range of distances in which a front-facing 

pattern with 24 corners can be tracked successfully.  Note the dynamically changing size 

of the search windows. 

 

 
Figure 5.4 – Allowable range of distances for a 20-corner pattern 

 
 
5.4 Orientation Robustness 
 

Due to perspective distortion, a square on the original pattern does not necessarily remain 

square when viewed at a sharp angle and projected into image space.  Thus, corners will 

change their shape which affects the corner finder’s detection ability.  However, this is 

not a problem since the corner finder our system uses relies on finding intensity changes 

in two directions (Appendix A), which are still evident even at severe orientations.  
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Figure 5.5 – Tracking under severe rotation (green boxes are successfully tracked 
corners, red boxes are corners that have failed to be detected unambiguously) 

 
The major source of orientation problems is the corner search window size.  It plays a 

key role since corner features on a planar region begin to converge onto other corners in 

screen space as pattern rotation increases.  For example, Figure 5.5 shows a 24-corner 

pattern undergoing a gradual rotation of 90 degrees.  As can be seen, the corner detection 

begins to deteriorate when corners enter search boxes for other corners.  As expected, the 

average reprojection error of the homography also begins to increase as more corners 

begin to converge.  However, as Figure 5.5 shows, the tracking continues up to almost 

75-80 degrees, which is quite robust for many types of augmentations.  

 

Figure 5.6 plots the reprojection errors of the various patterns as they undergo a rotation 

of 90 degrees, in approximately 15 degree increments, from the front-facing position.  

(a) (b) 

(c) (d) 
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The results show that increasing the number of corners negatively impacts the ability of 

the pattern to be rotated.  This is due to the fact that under severe rotation, a large number 

of the search windows begin to overlap other valid corner features, leading to ambiguous 

corner detections as discussed in Section 4.4.2.   
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Figure 5.6 – Tracker rotation tolerance 

 
5.5 Occlusion Robustness 
 

One of the main advantages of our tracking approach is the ability to handle significant 

amounts of occlusion.  Figure 5.7 shows a 17-corner pattern experiencing approximately 

30% occlusion.  The tracker can still detect enough corners so that a virtual 2D image can 

be correctly augmented onto the plane.   

 
Figure 5.7 – Example of pattern occlusion 
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Even under motion, the prediction scheme allows corners to be correctly recovered after 

temporary occlusions.  Figure 5.8a shows a pattern with all of its 20 corners being 

tracked successfully (indicated by green corner search boxes).  Figure 5.8b then shows a 

hand occluding two of the corners, with red boxes denoting the predicted locations.  

While occluded, the pattern is rotated slightly such that one of the occluded corners 

becomes visible again.  The non-occluded corner is then recovered, as depicted in Figure 

5.8c.  Note that the other corner is still being occluded, but the predicted location has 

changed after rotation.  After removing the hand from the scene, the predicted location 

for the remaining corner allows it to be recovered, as depicted in Figure 5.8d. 

 

Our results show that occlusion robustness is directly related to the number of corner 

features available for tracking; the more corners a pattern has, the more tolerant it is of 

partial occlusions.  In our experiments, Pattern G (with 40 corners) allows for the most 

occlusion.  This was also evident in our scale experiments, where it was observed that a 

larger number of corners allowed for patterns to be viewed at close range (when many 

corners were occluded by the edges of the visible screen area).  Another interesting 

observation is the gradual decrease in the stability of the computed homographies as 

more corners become occluded in any given pattern.  Predicted locations for corners 

begin to jitter significantly when the corner counts fall below 10 or so, depending on the 

collinearity of the remaining unoccluded corner features. 

 

Note that only Tracking Mode provides any robustness to occlusion.  Search Mode 

always requires the outside black border of the pattern to be completely visible.  
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Figure 5.8 – Corner recovery from occlusion after pattern motion 
 
5.6 Lighting Robustness 
 

Another favourable property of the corner feature for tracking purposes is its robustness 

to lighting.  Since intensity changes in two directions form the basis of corner finding, no 

special considerations need to be taken into account from the tracker’s perspective in 

order to handle significant lighting changes or shadows.  Therefore, as long as the black 

and white features on the planar pattern are somewhat distinguishable, the corner tracker 

continues to compute an accurate homography, even under dramatic changes in lighting 

(as shown in Figure 5.9). 

 

(a) (b) 

(c) (d) 
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Figure 5.9 – Continuous corner tracking under lighting changes 

 
5.7 Registration Stability 
 

The stability and accuracy of the homography is directly related to the stability and 

accuracy of the augmented objects.  In other words, if the homography cannot accurately 

recreate the orientation of the pattern in screen space, then the pose computations will be 

similarly affected.  In order to test the stability of the system we use the average 

reprojection error REavg described in Section 4.5.1. 

 

Our current implementation exhibits an average reprojection error between 0.67 and 1.4 

pixels with various front-facing patterns (all corners being tracked successfully), which is 

quite good for our captured 320x240 images and a standard USB camera.  The 

reprojection error begins to increase gradually as the orientation increases from the front-

facing position.  Occlusion of some corner features also increases the reprojection error, 

while scale does not seem to have any major effect.  

 

5.7.1 2D Registration 
 

As discussed in Chapter 2, there are two types of registration errors: static errors are 

alignment errors and jitter that occur when viewing a virtual object in an unchanging 

scene, while dynamic errors are those which occur when a scene is in motion.   

 

In our system, static errors for 2D registration are due to inaccuracies in the homography, 

which are a direct result of inaccuracies in the detected positions of the corner features.  

In order to test the amount of jitter, a number of different patterns were viewed with the 
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camera in a fixed position.  For each detected corner position in a pattern, the amount of 

pixel movement was recorded from frame to frame and the average pixel drift was 

computed.   

 

The system currently exhibits an average pixel drift of 0.16 pixels, regardless of the 

pattern, which is quite accurate for our standard USB camera hardware.  Neither scale nor 

orientation has any major effect on the average pixel drift.   

 

Since a video see-through technology is being used in our system, the dynamic error 

during 2D registration is the delay between the time a frame is captured from the camera 

and when the final augmented scene is presented to the user.  Currently the system 

performs at approximately 20 Hz while tracking, which leads to a delay of 50ms.  For 

most applications this is acceptable, but, as discussed in Chapter 2, anything above this 

delay would reduce the immersiveness of the augmented environment. 

 

5.7.2 3D Registration 

 

The static and dynamic registration errors that were described for 2D registration also 

occur when augmenting 3D objects.  However, 3D registration exhibits additional 

dynamic registration errors. 

 

Since the projection matrix is defined relative to the stored pattern, errors in the 

projection matrix become more noticeable the farther the augmented object is from the 

2D pattern plane.  As a result, when a pattern is rotated in the scene, the homography is 

constantly changing and thus the computed Z axis vector for the pattern changes.  

Therefore, augmented objects occasionally experience jitter in vertices that are far from 

the pattern plane when the camera or pattern is in motion.  When augmented objects have 

a relatively small change in depth, there is little visual impact of small errors in the 

projection matrix.   

 



 

 

73

A related dynamic error associated with 3D registration is the variance in focal lengths 

during the camera autocalibration.  At various orientations, inaccuracies in the 

homography cause the computed focal lengths to change significantly from the last 

frame, causing virtual objects to stretch or jitter during camera or pattern motion.  The 

weighted autocalibration scheme helps to resolve such sudden changes.  Figure 5.10 

shows the variance between the current and weighted focal lengths for a 30 second 

sequence in which a pattern is rotated left and right by 60 degrees from the front-facing 

position.  As can be seen, the weighted focal lengths help reduce the sudden focal length 

changes that occur during pattern motion. 
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Figure 5.10 – Variance between computed and weighted focal lengths 

 
 

 



 

 74

Chapter 6 
 
Conclusions 
 
 
In this chapter, we summarize our work in pattern-based augmented reality, and describe 

interesting future avenues for research.  We then conclude with a summary of the 

contributions that were made in this thesis. 

 

6.1 Comparisons with Previous Work 
 

The pattern-based augmented reality system that is most similar to ours is the ARToolkit 

technology [BILL01a, BILL01b, KATO00a, KATO00b].  Similar to our method, the 

ARToolkit augments virtual objects onto black and white planar patterns, but the 

technology cannot handle any partial pattern occlusions.  Additionally, the ARToolkit 

performs a global search of the entire video frame for candidate patterns.  By contrast, 

our localized corner-tracking approach provides better performance, especially at higher 

video resolutions. 

 

An improvement to the ARToolkit technology was presented in [KATO00c], whereby 

multiple planar patterns and circular blobs were tracked simultaneously in order to 

account for occlusions.  However, this required separate pose computations for each 

pattern, as well as prior knowledge of the relationship between the patterns in world 

coordinate space. 

 

6.2 Future Work 
 

6.2.1 Occlusion Between Real and Virtual Objects 
 

Our current system allows for visual occlusion between multiple virtual objects due to the 

use of OpenGL and standard Z-buffer hardware.  For real and virtual objects, however, 
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virtual objects are currently rendered in front of any real-world objects, regardless of the 

true occlusion relationships. 

 

In order to handle visual occlusions between virtual objects and the real-world, an 

accurate model of the real-world is required.  This model can be rendered transparently 

into the Z-buffer, causing subsequent renderings of virtual objects to only be drawn when 

they are closer than any real-world object [KLIN99].  

 

While predefined CAD models of the real-world are possible when working in known 

AR environments, computer vision techniques are increasingly being used to recreate 3D 

information of a real-world scene for occlusion purposes [KLIN99].  A method that 

doesn’t require 3D reconstruction is presented in [BERG97], which involves finding 

contours of objects in the real-world and determining whether they are in front or behind 

any virtual object.  The contour information is then used to compute an occlusion mask 

that is used to determine real and virtual object ordering.  A semi-automatic approach is 

presented in [LEPE00], but the method is not suited for real-time usage.  The basic idea 

involves a user manually selecting occlusion areas in a small number of keyframes of a 

video sequence, and the algorithm automatically computes occlusions in intermediate 

views. 

 

6.2.2 Virtual Lighting 
 

Currently, all virtual objects are rendered at a fixed light intensity.  Therefore any 

changes in the lighting conditions of the real environment have no effect on the 

appearance of virtual objects, which reduces the realism of the augmented scene.  The 

difficulty with recreating lighting is being able to efficiently extract the positions of all 

light sources, as well as the reflective material properties of objects in the real world, 

from a real-time video sequence [KLIN99].  A method to extract a radiosity lighting 

model from 2D images is presented in [LOSC00], but the algorithm requires 3D 

information of the surrounding environment and it does not operate in real-time.  A real-

time algorithm is briefly discussed in [KLIN99], but it also requires an accurate 3D 
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description of the real environment that must be obtained either manually or by some 

other offline method. 

 

6.2.3 Virtual Object Manipulation 
 

One of the motivations for being able to handle partial occlusions of our planar patterns 

was to eventually allow manipulations of the virtual objects using hand gestures or 

special selection devices.  Allowing a user to grasp a virtual object and move it or 

manipulate it in a natural manner would open the door to interesting applications for 

collaborative product design or entertainment.  Additionally, issues such as virtual object 

physics (friction, gravity, etc.) and collision detection (between virtual-virtual and real-

virtual objects) would further enhance the realism and immersiveness of an augmented 

environment.  Some preliminary work that combines hand tracking with our augmented 

reality system is presented in [MCDO02]. 

 

6.2.4 Auditory and Haptic Devices 
 

Another open area of research involves haptic devices, as discussed in Chapter 1.  With a 

special glove, a user grasping a virtual object would experience force-feedback in his or 

her hands and fingertips, providing additional information regarding the shape and 

texture of the entity.  A good discussion and implementation of a haptic device in an 

augmented reality environment is presented in [VALL98]. 

 

Auditory feedback would also benefit AR considerably, much in the same way as it 

enhances the real world.  For example, humans regularly use sound to determine material 

properties of objects, such as glass, wood, concrete, etc.  Providing similar information in 

an AR environment, in conjunction with haptic devices to simulate touch, would enhance 

realism considerably.  
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6.3 Summary 
 

In this thesis we described a robust solution for vision-based augmented reality tracking 

that identifies and tracks, in real-time, known planar patterns consisting of a set of 

corners.  The advantage in tracking corners is their robustness at a large range of 

distances, reliability under severe planar orientations, and tolerance of significant lighting 

changes or shadows.   

 

Using the corner correspondences computed between the stored pattern and its projection 

in the image, it is possible to compute a 2D homography H between the two.  With this 

computed homography we can perform uncalibrated 2D augmentations by placing any 

2D picture in place of the pattern in the image.  Additionally, the homography can be 

computed even when some of the corners are occluded. 

 

From this computed homography it is possible to determine both the intrinsic and 

extrinsic parameters of the camera by an autocalibration process.  This enables us to 

compute the full perspective camera projection matrix and thus perform augmentations of 

not just 2D objects, but also of perspective-correct 3D objects.  Therefore, the 

augmentation system can automatically adjust to different types of cameras without 

having to go through a formal calibration step, as well as handle zoom lenses.   

 

The design of the system was described, and experiments demonstrated the feasibility 

and reliability of the system under various situations, most significantly under partial 

pattern occlusion.  This robustness, combined with the unique approach of using a 

homography to continuously calibrate the camera, should bring augmented reality one 

step closer to becoming a mass-market technology.  
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Appendix A 
 
Subpixel Corner Finding 
 
Corners remain relatively stable across a sequence of images in a video.  For this reason, 

a number of corner finding algorithms [HARR88, TRUC98, BENE98] have been 

proposed in the computer vision literature for tracking purposes.  The most popular is the 

Harris corner finder that computes a corner strength λp for each pixel p in a search 

window W of a grayscale video image [HARR88].  This is determined using a 2x2 

symmetric matrix 
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where Q is a (2N + 1)x(2N + 1) neighborhood of pixels around p (we use N=3), and Ex 

and Ey are respectively  the x and y spatial image gradients around p using Sobel edge 

filters [TRUC98].  Geometrically, the two eigenvectors of Cp define edge directions at 

pixel p, and the two eigenvalues λ1 and λ2 define the edge strengths [TRUC98].  A strong 

corner is thus denoted by two large eigenvalues, where λ1 ≥ λ2.  A point is a corner if the 

smaller of the two eigenvalues λp  = λ2 is larger than some predetermined corner strength 

threshold λT.  

 

Note that the λT value is dependent on the size of the chosen neighbourhood for p.  

Therefore, a histogram analysis of the λ2 values of an entire image can be used to decide 

on a suitable threshold.  The best threshold for corners will be located to the right of a 

large peak in the histogram [TRUC98]. Note that this should not be performed for each 

frame, since the corner finding algorithm is computationally expensive ( O(N3) ) when 

performed on an entire image.  For our system, a user-defined threshold is used. 

 

Since the corner finder computes a λ2 value for each pixel in W, the strongest corner will 

be denoted by the pixel with the largest λ2 value.  The problem with this method of corner  
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finding is the lack of subpixel precision on the computed corner coordinate.  This could 

lead to corner features exhibiting full pixel jitter from frame to frame, which could affect 

homography stability in subsequent stages of the tracking system.   

 

Fortunately, the λ2 values provide a convenient facility which can be used to compute 

subpixel coordinates for the corners.  Non-maximal suppression is first used to locate the 

strongest corner position s = (x, y) in the pixel neighbourhood [TRUC98].  A subpixel 

location is then computed based on weighting the corner strengths of the 4-connected 

neighbours as follows: 

 

 

 

where λi represents the corner strength of pixel i in Figure A.1. 

 

 
Figure A.1 – Four-connected neighbourhood for a corner pixel s. 
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