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Abstract

For humans,to view a scenewith two eyesis clearly more
advantageousthanto do that with oneeye. In computervi-
sionhowever, mostof high-level visiontasks,an exampleof
which is facetracking, are still donewith onecamera only.
Thisis dueto thefact that,unlike in humanbrains,therela-
tionshipbetweentheimagesobservedbytwoarbitraryvideo
cameras, in manycases,is not known. Recentadvancesin
projectivevisiontheoryhoweverhaveproducedthemethod-
ology which allows oneto computethis relationship. This
relationshipis naturally obtainedwhile observingthesame
scenewith bothcamerasandknowingthis relationshipnot
onlymakesit possibleto track featuresin 3D,but alsomakes
trackingmuch morerobustandprecise. In thispaper, wees-
tablisha framework basedon projectivevision for tracking
facesin 3D using two arbitrary cameras, and describea
stereotracking system,which usestheproposedframework
to track facesin 3D with theaid of twoUSBcameras.While
beingvery affordable, our stereotracker exhibits pixel size
precisionandis robustto head’srotationin all threeaxisof
rotation.

1 Intr oduction

We considerthe problemof tracking facesusing a video
cameraandfocusour attentionon thedesignof thevision-
basedperceptualuser interface systems[28]. The main
applicationsof thesesystemsare seenin HCI, teleconfer-
encing, entertainment,security and industry for disabled
[27, 30].

Being a high-level vision problem,facetrackingprob-
lem posesfour major challenges: robustness,precision,
speedand affordability. While the last two have become
muchlesscritical over the last few yearsdueto the signif-
icant increaseof computerpower and decreaseof camera
cost,thefirst two remainunresolved.

Theapproachesto facetrackingcanbedividedinto two
classes:global (image-based)andlocal (feature-based)ap-
proaches[10, 31]. Global approachesuseglobal cueslike�

Theauthorthecorrespondenceshouldbesentto.

skin colour, headgeometryand motion, are more robust,
but cannotbe usedfor pixel-sizeprecisiontracking. On
theotherhand,local approaches,which arebasedon track-
ing facial features,cantheoreticallytrackvery precisely. In
practicehowever they do not, becausethey arevery unro-
bust, due to the variety of motionsandexpressionsa face
mayexhibit.

While for humansit is definitely easierto track objects
with two eyes thanwith oneeye, in computervision face
tracking is usuallydonewith onecameraonly. A few au-
thorsdo usestereofor facetracking[14, 15, 20, 29]. They
however usethe secondcameramainly for the purposeof
acquiringthe third dimensionratherthanmaking tracking
more robust, preciseor affordable. In fact, conventional
stereosetupsareusuallyprecalibratedandquiteexpensive.

Theproblemis thathumanbrainknowsandmakesuseof
the relationshipbetweenthe imageswhile processingthem
[2, 3], whilecomputersdonot. Recentadvancesin computer
visionthoughprovidedthemethodologybasedonprojective
vision that allows oneto computethis relationshipfor any
two cameras[9, 23]. This relationshipis naturallyobtained
while observingthe samescenewith both camerasand is
representedby thefundamentalmatrixwhichrelatesthetwo
imagesto oneanother.

This paperdescribeshow to use the projective vision
techniquesfor tracking faceswith two arbitrary cameras.
Themostsignificantresultis thatcomputingthefundamen-
tal matrix not only allows one to recover the 3D position
of the objectwith low-costcameras,but alsomakestrack-
ing muchmorerobust. Combiningtheproposedprojective-
vision-basedtracking approachwith the robust convex-
shapenosetrackingtechniquedescribedin [5] allowedusto
build astereotrackingsystem,whichis ableto trackfacesin
3D usingtwo genericUSB cameras.The robustnessof the
system,the binary codeof which canbedownloadedfrom
our website,is suchthat therotationsof a headof up to 40
degreesin all threeaxisof rotationcanbetracked.

The paper is organizedas follows. After presenting
the outline of our framework for affordablestereotracking
(Section2), we recaptheprojectivevision propertieswhich
make the framework possible(Section3). This is followed
by the descriptionof the stereoselfcalibrationprocedure
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Figure1: Stereotrackingwith two web-cameras.Thekey issueis
finding therelationshipbetweenthecameras.

(Section4). Thenwe describethetrackingprocedureof the
framework andpresenttheexperimentalresults(Section5).

2 Stereosystemsetup

In order to presenta framework for doing stereotracking
with two arbitrary uncalibratedcameras,we will describe
theStereoTrackerdevelopedbyourgroup,wherethisframe-
work is implemented.

The StereoTracker allows a user to do high-level vi-
siontaskswith off-the-shelfvision equipment.It tracksthe
faceof a userin 3D with theaid of two ordinaryUSB web-
camerasandconsistsof threemajormodules:1) stereoself-
calibration,2) facial featureslearningand3) featuretrack-
ing. Thesetupof thesystemis thefollowing.

A usermountstwo USB camerason thetop of thecom-
putermonitor so thathis faceis seenby bothcameras(see
Figure1), afterwhich theuserrunstheselfcalibrationmod-
uleof theStereoTracker to acquiretherelationshipbetween
thecameras.For this theusercaptureshis headat thesame
time with both camerasat the distanceto be usedin track-
ing (Figure2). Whenthestereocalibrationinformationhas
beencalculated,the StereoTracker makesuseof it to learn
robust facial features(Figure3), and thenmakesuseof it
againwhile trackingthefeaturesin 3D (Figure4).

Beforeproceedingto the descriptionof the calibration
procedure,which is the basisof our stereotrackingframe-
work, we needto describenotationsand propertiesto be
usedthroughoutthepaper.

3 Projectivevision interlude

3.1 Points, lines and calibration matrix.

Accordingto the projective paradigm,every 2D pixel ���� 	�

�����
of an imageis asassociatedwith the3D vector ���� ��
���
���� �

which startsat thecameraorigin andgoesthough
to all 3D spacepointswhich areprojectedto thesamepixel

on the imageplane.1 A line in an imageis representedby
3D vector � which is perpendicularto all points � belonging
to theline: � � ����� .

The relationshipbetweenvector � andpixel position �
of a point in theimageis expressedas

���! !"�$# (1)

where "� denotesa 3D vectorobtainedfrom a 2D vector �
by addingoneasthelastelement.Matrix K in thisequation,
thesimplifiedform of which is written below, is termedthe
calibration matrix of thecamera.It describesthe intrinsic
parametersof the camera,the mostimportantof which are
the centerof the image % 	
&'
(�)&+* measuredin pixel coordi-
nates,andthe focal lengthof the camera, , definedasthe
distancefrom thecameraorigin to thecameraimageplane
measuredin pixels:

 -� ./ , � 	 &� , � &� � �
01 # (2)

Computingthe calibrationmatrix of the cameraconsti-
tutesthecalibrationprocessof thecamera.Thegoalof self-
calibrationis to computethis matrix directly from an im-
agesequencewithout resortingto a formal calibrationpro-
cedure.Oneof thewaysto do this is by usingthe concept
of thefundamentalmatrix.

3.2 Stereoand fundamental matrix

Whena 3D point 2 in spaceis observed by two cameras,
it is projectedto theimageplaneof eachcamera.This gen-
eratestwo vectors� and �43 startingfrom theorigin of each
camera.Thesevectorsarerelatedto eachotherthroughthe
equation � ��57698 � 3 �!� 
 (3)

where
5

is the translationvectorbetweenthe cameraposi-
tions and

8
is the rotation matrix. This equationsimply

statesthefactvectors� ,
5

and �43 arecoplanar. In computer
vision,thisequationis known astheepipolarconstraint and
is usuallywrittenas

� �;: � 3 ��� 
 where (4):=< 5>6?8
is termedtheessentialmatrix# (5)

The epipolarconstraintholdsfor any two camerasetup
andis very importantfor 3D applications,asit definesthe
relationshipbetweenthe correspondingpointsin two cam-
era images.For handmadestereosetupwith off-the-shelf

1Some authors [11, 8] prefer using vector @ ACBED�B
F+GIH instead of@ ACBEDJB � GIH in orderto avoid theunbalancingof thevalues.



Figure2: Imagescapturedby two camerasto beusedin selfcali-
bration.They shouldhave enoughvisualfeatures.

cameras,
5

and
8

arenot known. If thecamerasareuncali-
brated,thenmatrix  is not known either. In this case,the
epipolarconstraintis rewritten,usingEq. 1, as"� ��K "�L��� (6)

where "�M� � � 
ONP
)�Q��� and "�;3R� � �S3 
 ��3 
)�Q��� definethe raw
pixel coordinatesof thecalibratedvectors� and �43 , andma-
trix

K
definedas K <  :  � (7)

is termedthefundamentalmatrix of thestereo.
Computingthe fundamentalmatrix constitutesthe cali-

brationprocessof the stereosetup. Next sectiondescribes
thisprocessin detailfor thecaseof low-qualitycameras,and
below we describethepropertiesof thefundamentalmatrix
to beusedin stereotracking.

3.3 Epipolar lines

Given a point � in oneimage,the fundamentalmatrix can
be usedto computea line in the otherimageon which the
matchingpointmustlie. This line is calledtheepipolarline
andcanbecomputedas �ETU� K �V# (8)

It is this pieceof extra informationthatmakestracking
with two camerasmuchmorerobustthantrackingwith one
camera.In orderto filter out badmatches,the epipolarer-
ror, definedasthe sumof squaresof distancesof pointsto
their epipolarlines,canbeused[9]. UsingEq. 8, the rela-
tionshipbetweenepipolarerror W andfundamentalmatrix

K
canbederivedasW <!XZY %[� 
 �ETJ\ *4] X 3 Y %[��3 
 �[T *�^%E� 3 � K � * YP_ `acb TJdfe g�h aib TJdfee ] `aibkj T \ dfe glh aibkj T \ dEeeZm (9)

andthefollowing propositioncanbeusedto make tracking
morerobust.
Proposition: Provided that fundamentalmatrix

K
of the

stereo is known,the bestpair of matches � and ��3 corre-
spondingto a 3D featureis theonethatminimizestheepipo-
lar error definedbyEq. 9.

4 Stereosystemselfcalibration

The calibrationproceduredescribedbelow is implemented
using the public domain Projective Vision Toolkit (PVT)
[18] and is basedon finding the correspondencesin two
imagescapturedwith both camerasobservingat the same
staticscene.Becauseoff-the-shelfUSBcamerasareusually
of low quality and resolution,extra care is taken to deal
with the badmatchesby applyinga setof filters andusing
robuststatistics.Thedescriptionof eachstepfollows.

Finding interest points. After two imagesof the same
sceneare taken, the first stepis to find a setof cornersor
interestpoints in eachimage. Theseare the pointswhere
there is a significantchangein intensity gradientin both
the

�
and

�
direction. A local interestpoint operator[26]

is usedand a fixed numberof cornersis returned. The
final resultsarenot particularlysensitive to the numberof
corners. Typically there are in the order of 200 corners
foundin eachimage.

Matching corners and symmetry filter. The next step
is to matchcornersbetweenthe images. A local window
aroundeachcorner is correlatedagainstall other corner
windows in the adjacentimage that are within a certain
pixel distance[32]. Thisdistancerepresentsanupperbound
on the maximumdisparity and is set to 1/3 of the image
size. All corner pairs that passa minimum correlation
thresholdare then filtered using a symmetry test, which
requiresthe correlation be maximum in both directions.
Thisfilters out half of thematchesandforcestheremaining
matchesto beone-to-one.

Disparity gradient filter. Thenext stepis to performlocal
filtering of thesematches.We usea relaxation-like process
basedon theconceptof disparitygradient[12] which mea-
suresthecompatibilityof two correspondencesbetweenan
imagepair. It is definedastheratioX'npo �rq s�tvuws�x�q yzq s|{�}'~� q 
 (10)

where s t and s x arethe disparityvectorsof two corners,s�{�}'~� is the vector that joins midpointsof thesedisparity

vectors,and q���q designatesthe absolutevalueof a vector.
The smaller the disparity gradient, the more the two
correspondencesin agreementwith eachother. This filter is
very efficient. At a very low computationalcost,it removes
a significantnumberof incorrectmatches.

Usingrandom sampling. Thefinal stepis to usethefiltered
matchesto computethe fundamentalmatrix. This process
mustberobust,sinceit still cannot beassumedthatall fil-
teredcorrespondencesarecorrect. Robustnessis achieved
by usinga randomsamplingalgorithm. This is a “generate



andtest”processin whichaminimalsetof correspondences,
thesmallestnumbernecessaryto defineauniquefundamen-
tal matrix (7 points),arerandomlychosen[25, 22]. A fun-
damentalmatrix is then computedfrom this bestminimal
setusingEq. 6. Thesetof all cornersthatsatisfythis fun-
damentalmatrix, in termsof Eq. 9, is calledthesupportset.
Thefundamentalmatrix with thelargestsupportsetis used
in stereotracking.Beforeit canbeusedhowever, it needsto
be evaluated,becauserobust andprecisetracking tracking
is possibleonly underthe assumptionsthat the computed
fundamentalmatrix correctlyrepresentsthe currentstereo-
setup.

4.1 Evaluating the quality of calibration

The evaluationis doneusing two ways: analytically - by
examiningthesizeof thesupportset,andvisually- by visual
examinationof theepipolarlines.

It hasbeenempiricallyobtainedthatfor thefundamental
matrix to becorrectit shouldhaveat least35matchesin the
supportset. If their numberis less,it meansthat either i)
therewerenotenoughvisualfeaturespresentin theimages,
or ii) camerasare locatedtoo far from eachother. In this
case,camerashaveto berepositionedor someextraobjects,
in additionto thehead,shouldbeaddedin thecamerafield
of view andthecalibrationprocedureshouldberepeated.

Figure3 shows theepipolarline (on theright side)cor-
respondingto the tip of the nose(on the left side) as ob-
tainedfor thestereosetupconsistingof two Intel USBweb-
camsshown in Figure1. As canbeseen,it passescorrectly
throughthenose,thusverifying thecorrectnessof thefunda-
mentalmatrixandpresentingausefulconstraintfor locating
thenosein thetrackingstage.

4.2 Finding the calibration matrix

Knowing matrix
K

allowsoneto computematrix  . Under
the assumptionsthat the intrinsic parametersof both cam-
erasarethesame,theapproachwe useis thatof [17]. It is
basedon the fact that matrix

:
, definedby Eq. 5 andre-

latedto matrix
K

throughEq. 7, hasexactly two non-zero
andequaleigenvalues.The ideais to find suchcalibration
matrix  that makesthe two eigenvaluesof

:
ascloseas

possible.Giventwo nonzeroeigenvaluesof
:

: � ` and � Y
( � `|� � Y ), considerthedifference%E� ` u�� Y * y�� ` .

Givena fundamentalmatrix
K

, selfcalibrationproceeds
by finding sucha calibrationmatrix thatminimizesthis dif-
ference. This is an optimizationproblemwhich is solved
by dynamichill climbinggradientdescentapproach[16]. In
[24] it is shown that this procedure,while quite simple, is
not inferior to morecomplicatedapproachesto selfcalibra-
tion, suchasthoseusingtheKruppa’sequation[13].

Knowing matrix  and the focal length allows one to
reconstructspatialrelationshipof theobservedfeatures.For

Figure3: Learningthefeaturesusingtheepipolarconstraints.The
nosefeaturemustlie on theepipolarline.

the tracking processhowever, this information is not re-
quired.

5 Stereofeature tracking

We usethepatternrecognitionparadigmto representa fea-
tureasamulti-dimensionalvectormadeof featureattributes.
In the caseof image-basedfeaturetracking,the featureat-
tributesare the image intensitiesobtainedby centeringa
speciallydesignedpeepholemaskonthepositionof thefea-
ture(asin [6]).

Themajoradvantageof stereotracking,i.e. trackingwith
two cameras,overtrackingwith onecamerais thatof having
anadditionalepipolarconstraintwhich ensuresthat theob-
servedfeaturesbelongto arigid body(seeSection3.3).Us-
ing thisconstraintallowsusto relaxthematchingconstraint
usedto enforcethe visual similarity betweenthe observed
andthetemplatefeaturevectors.Thematchingconstraintis
the main reasonwhy feature-basedtrackingwith onecam-
erais not robust,andrelaxingthisconstraintmakestracking
muchmorerobust.

5.1 Feature learning

In thiswork, wearenotconcernedwith automaticdetection
of facial features.All featuresaremanuallychosenat the
learningstage.During this stage,by clicking with a mouse
a userselectsa featurein oneof thepair images(seeFigure
3). This generatesan epipolarline in the other imageand
thetemplatevectorsof boththeselectedfeatureandthebest
matchof the featurein theotherimagelying on theepipo-
lar line arestored.Theexamplesof learnttemplatescanbe
seenin Figure4 underneaththefaceimages.By visuallyex-
aminingthesimilarity of thesetemplates,a usercanensure
that thestereosetupis well calibratedandthat theepipolar
constraintindeedprovidesausefulconstraint.

Several featurescanbe selectedfor tracking. However
oneof thesefeaturesmustbethetip of thenose.Thetip of
thenoseis averyuniqueandimportantfeature.As shown in
[5], dueto its convex shape,this featureis invariantto both
therotationandthescaleof thehead.If detectionof theface



orientationis not required,thenrobust facetrackingin 3D
canbeachievedusingthis featureonly.

Otherfeaturesmayincludeconventionaledge-basedfea-
turessuchasinnercornersof the brows andcornersof the
mouth. At leasttwo of thesefeaturesarerequiredin order
to track the orientationof the head.Thesefeaturesarenot
invariant to the 3D motion of the head. Therefore,in or-
der to make the trackingof thesefeaturesrobust, the rigid-
ity constraintwhich relatestheir positionsto thenoseposi-
tion is imposed.Thisconstraintis computedwhile selecting
the features. Another constraintusedin stereotrackingis
thedisparityconstraint,which definestheallowabledispar-
ity valuesfor featuresduring thetracking,thuslimiting the
areaof search.Boththerigidity andthedisparityconstraints
arecomputedduringtheselectionof featuresin thelearning
stageandcanbeengagedor disengagedduringthetracking.

5.2 Tracking procedure

Eachselectedfacial featureis tracked using the following
four-stepprocedure.

Step1. The areafor the local searchis obtainedusing
therigidity constraintandtheknowledgeof thenosetip po-
sition. Whentherigidity constraintis not engagedor when
the featureis the nose,the local searchareais setaround
thepreviouspositionof thefeature.If thisknowledgeis not
available(asin thecaseof mistracking),thenthesearcharea
is setto theentireimage.

Step2. A setof � bestcandidatematches�+���+� is gen-
eratedin both imagesby usingthepeepholemaskandcor-
relatingthelocal searchareawith templatevector ��S� learnt
in the training. In order to be consideredvalid, all candi-
datematchesare requiredto have the correlationwith the
templatefeaturelarger thana certainthreshold. In our ex-
periments,theallowableminimumcorrelationis setto 0.9.

Step3. Out of � Y possiblematchpairs betweentwo
images, the best � pairs are selectedusing the cross-
correlationbetweenthe images. In our experiments,� is
setto 10and � is setto 5. Increasing� or � increasesthe
processingtime,but makestrackingmorerobust.

Step4. Finally, thepropositionof Section3 is usedand
the matchpair that minimizesthe epipolarerror W defined
by Eq. 9, is returnedby thestereotrackingsystem.If there-
turnedmatchhastheepipolarerrorlessthenacertainthresh-
old, thanthefeatureis consideredsuccessfullytracked.Oth-
erwise,the featureis consideredmistracked. The valueof
themaximumallowableepipolarerror WZ���p� dependsonthe
quality of stereoselfcalibrationand shouldbe determined
during the learningstageby observingthe epipolarlinesat
differentpartsof theimage.In theexperimentspresentedin
thispaperit is setequalto 5 pixels.

Whena featureis successfullytracked, its 3D position
can be calculatedusing the essentialmatrix

:
as in [9].

The distancebetweenthe camerascanbe eithermeasured

Figure4: TheStereoTracker atwork. Theorientationandscaleof
the virtual man(at the bottomright) is controlledby the position
of theobservedface.

by handor setequalto one.In thelattercase,thereconstruc-
tion will be known up to a scalefactor, which is sufficient
for mostapplications

5.3 Experiments

The tracked facial featuresprovide the information about
the position and the orientationof the headwith respect
to the cameras.This informationcanbe usedto control a
2D object on the screen,suchas a cursoror a turret in a
aim-n-shootgame(as in [7]), or it can be usedto control
a 3D object,examplesof which canbe found in computer
gamesand avatar-like computer-generatedcommunication
programs(asin [19]). TheStereoTracker system,which we
have developed,allows one to test the applicability of the
proposedstereotrackingtechniqueto eitherof theseappli-
cations.

Figure4 shows two imageswhich arecontrolledby the
motionof thehead.Theimageon thebottomleft is there-
projectionof thedetectedfeaturesontothe2D imageplane.
Our experimentsshow thatby thinking of a noseasa point-
ing device,onecaneasilypin-pointto any pixelsontheper-
spectiveview screen.Thesystemis robustto therotationof
thehead.This makesit possibleto draw a straightline with
thenose,representedby the lowestvertex of thetrianglein
thefigure,by simply rotatingthehead.

Theuserinterfaceof theStereoTrackerallowsonealsoto
changetheperspectiveview of thefeaturesto thetop-down.
view. This is usedto evaluatethepotentialof usingthethird
dimensionof thetrackedfeaturesfor controllingthesizeof
a cursoror anothervirtual objecton thescreen.The image
on thebottomright of Figure4 showsavirtual man,thepo-
sitionof whichin avirtual 3D spaceis controlledby themo-



tion of theuser’s head;thescaleof themanis proportional
to thedistancebetweenthefeaturesandthecameraandthe
roll rotationof the mancoincideswith the roll rotationof
thehead.

Dueto therobustnessof thestereotracking,thereis quite
a wide rangeof headmotion which can be tracked. For
example,for the setupshown in Figure1, the experiments
show that within a rangefrom 20 cm to 60 cm the headis
trackedsuccessfully. Thetrackinghoweverbecomelessro-
bustto therotationof thehead,asausermovesfurtherfrom
theoriginalposition.

Another observation is that stereotrackingwith low-
quality camerasdoesnot allow oneto retrieve the panand
tilt rotationof thehead.Thishoweverdoesnotcomeassur-
prise,if we recallthatthedepthcalculationerrordueto low
resolutionof the imagecanbe ashigh as10% of the mea-
sureddepthdistancedependingonthepositionof thefeature
[4, 21].

The user interfaceof the StereoTracker allows one to
evaluatetherobustness,speedandprecisionof stereotrack-
ing with respectto the internalparametersandconstraints
of tracking. Theseparameterscan be changedduring the
trackingstageandincludealreadythementionedminimum
allowablecorrelation,thenumberof featurecandidates( � ),
the numberof refinedmatchesafter cross-correlation( � ),
maximumepipolarerror, andalsothesizeof theareafor the
subpixel refinement,whichcanbeusedfor thefeaturespos-
sessingthecontinuityproperty(see[5]), andthemaximum
colordifferencebetweenthestoredfeaturepixel andapixel
being scanned. The last constraintis due to the fact that
templatematchingin oursystemis donewith black-n-white
images;addingthis constraintallows us to usethe colour
informationto reducethenumberof featurecandidates.

In addition,thefacialfeaturescanbecheckedin andout
for trackingusingthe menuof the program.Thedisparity,
rigidity and epipolarconstraintscan also be engagedand
disengagedusing the menu. While tracking is performed,
the StereoTracker outputsstatisticssuchas minimum and
maximumvaluesof correlation,cross-correlationandepipo-
lar errorsof thedetectedfeaturesaswell asthedetected3D
positionandroll orientationof theheadandthepositionof
thecursorcontrolledby thehead.

While the paperpresentsonly the snapshotsof our ex-
periments,full MPEG videosof the StereoTracker at work
areavailableatourwebsite.Thebinarycodeof theprogram
canalsobedownloadedfrom thewebsite.In orderto run it,
a userwill only have to have two USB webcamsconnected
to a computer. In our experiments,we usedtwo Intel USB
web-cameras.OtherUSB webcams,suchasLogitech,Cre-
ative and3Com,werealso tried. Accessingthe imagesis
doneusingtheDirectX interface.Theresolutionof the im-
agesis 320by 240.Lowerresolutionof 160by 120wasalso
tried andfoundto besufficient for preciseandrobusttrack-
ing. Imagesmoothingis doneusingthe Intel OpenSource

CV library [1]. On a PentiumIII 800 MHz processor, all
processingtakes0.10msperframein average.This allows
oneto do stereofacetrackingin realtime.

Figure5 shows a typical rangeof headmotionwhich is
trackedusingour framework alongwith thepositionof 2D
and3D objectscontrolledby the headmotion: tilt motion
(a),panmotion(b), roll motion(c), andmotionfurtherfrom
thecameras(d). Yellow boxesaroundthefeaturesshow the
areasfor local searchof thefacialfeatures.Usingthreefea-
turesis found most optimal for recovering the orientation
of the head;inner cornersof the brows beingmoreprefer-
ableto track thancornersof themouth. Usingfive features
slowed down the processingandoften resultedin breaking
the rigidity constraint.Thefigureshows well the precision
andtherobustnessof stereotracking. By switchingon and
off theepipolarconstraint,we wereableto observe thatus-
ing onecameradoesnot allow oneto detectfeaturesin the
imageslike thoseshown in Figure5.(c)(d), whereasusing
two camerasdoes.In asimilar fashion,by switchingonand
off the rigidity constraint,we couldseehow stereotracking
allows oneto track robustly even suchnon-robust features
ascornersof thebrows.

We have experimentedwith the differentbaselinesbe-
tweenthecameras,andthedistanceof about10–20cm ap-
pearsto be themostoptimal. Largerbaselinesresultin too
few matchesneededto computethe fundamentalmatrix,
while smallerbaselinescauselarge epipolarerrors. It was
alsoobservedthat thealignmentof thecamerasis not very
critical for our framework, whichis is attributedto usingthe
rotationinvariantconvex-shapenosefeatureandthecombi-
nationof theepipolarconstraintwith therigidity constraint.

6 Conclusions

In this paperwe defineda framework for trackingfacesin
3D usingtwo genericweb-cameras.Theadvantagesof us-
ing two cameras(two “eyes”) for facetracking,asexhibited
by ourStereoTracker, aresummarizedbelow. Onecantrack
features:
1. In low quality images.– Low costplug-n-playUSBcam-
erasareused.
2. Moreprecisely, with sub-pixel accuracy. – Onecanmove
the screencursorwith his/herheadonepixel at time on a
360x240grid.
3. More robustly, with respectto scaleand rotations. –
Featuresaretrackedfor up to almost40 degreesof rotation
of headin all threedirections: “yes”(up-down), “no”(left-
right), and“don’t know” (clockwise).
4. In real time. – After two camerashave beencalibrated,
the work of trackingbecomessimpler. Calibrationcanbe
doneautomatically, assoonastheheadis seenin bothcam-
eras.
5. In 3D. - 3D coordinatesandtheroll angleof theheadare



recovered.
Projective vision androbust statisticsenableus to deal

with uncalibratedcameras(i.e. camerasfor which the in-
trinsic parameterssuchas focal length, optical centeretc.
arenotknown),whicharethemostcommoncamerasonthe
market. Thegainin theaccuracy androbustnessis achieved
by usingtwo cameraswhereonly onecamerahasbeenused
in the past. It is thus believed that the proposedtechnol-
ogy bringshigh-level computervision solutionscloserfor
themarket.
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Figure5: Snapshotsof experimentsshowing therobustnessandprecisionof thestereotrackingaccomplishedwith two webcams.


