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Abstract

For humanso view a scenewith two eyesis clearly more
advantagyeousthanto do that with oneeye In computervi-

sionhowever, mostof high-level visiontasks,an exampleof
which is facetradking, are still donewith onecames only.

Thisis dueto thefactthat, unlike in humanbrains,therela-
tionshipbetweeriheimagesobservedytwoarbitrary video
cameass, in manycasesjs not known. Recentadvancesn

projectivevisiontheoryhowever haveproducedhe method-
ology which allows oneto computethis relationship. This
relationshipis naturally obtainedwhile observingthe same
scenewith both camens and knowingthis relationshipnot
onlymalesit possibleto track featuresin 3D, but alsomales
trackingmucd more robustandprecise In this paperwees-
tablish a framevork basedon projectivevisionfor tradking

facesin 3D using two arbitrary camens, and describea

stereotrading systemwhich usesthe proposedramevork
to track facesin 3D with theaid of two USBcameas. While
being very affordable our steeotradker exhibits pixel size
precisionandis robustto headsrotationin all threeaxis of

rotation.

1 Intr oduction

We considerthe problemof tracking facesusing a video
cameraandfocusour attentionon the designof the vision-
basedperceptualuser interface systems[28]. The main
applicationsof thesesystemsare seenin HCI, teleconfer
encing, entertainment,security and industry for disabled
[27, 30].

Being a high-level vision problem,facetracking prob-
lem posesfour major challenges: robustness,precision,
speedand affordability. While the last two have become
muchlesscritical over the lastfew yearsdueto the signif-
icant increaseof computerpower and decreasedf camera
cost,thefirst two remainunresohed.

Theapproacheto facetrackingcanbedividedinto two
classesglobal (image-basedandlocal (feature-basedp-
proacheq10, 31]. Globalapproachesiseglobal cueslike

*Theauthorthe correspondencghouldbe sentto.

skin colour, headgeometryand motion, are more robust,
but cannotbe usedfor pixel-size precisiontracking. On
the otherhand,local approachesyhich arebasedon track-
ing facialfeaturescantheoreticallytrack very precisely In
practicehowever they do not, becausehey arevery unro-
bust, dueto the variety of motionsand expressionsa face
may exhibit.

While for humansit is definitely easierto track objects
with two eyesthanwith oneeye, in computervision face
trackingis usually donewith one cameraonly. A few au-
thorsdo usesteredfor facetracking[14, 15, 20, 29]. They
however usethe secondcameramainly for the purposeof
acquiringthe third dimensionratherthan making tracking
more robust, preciseor affordable. In fact, corventional
sterecsetupsareusuallyprecalibratecandquite expensve.

Theproblemis thathumanrbrainknowsandmakesuseof
the relationshipbetweerthe imageswhile processinghem
[2, 3], while computerglonot. Recentadvancesn computer
visionthoughprovidedthemethodologyasedn projective
vision that allows oneto computethis relationshipfor ary
two camerag9, 23]. Thisrelationshipis naturallyobtained
while observingthe samescenewith both camerasandis
representelly thefundamentaiatrixwhichrelateghetwo
imagesto oneanother

This paperdescribeshow to usethe projectie vision
techniquedfor tracking faceswith two arbitrary cameras.
Themostsignificantresultis thatcomputingthe fundamen-
tal matrix not only allows oneto recover the 3D position
of the objectwith low-costcamerashut also makestrack-
ing muchmorerobust. Combiningthe proposedrojective-
vision-basedtracking approachwith the robust corvex-
shapenosetrackingtechniquedescribedn [5] allowedusto
build asterearackingsystemwhichis ableto trackfacesn
3D usingtwo genericUSB cameras.The robustnes®f the
system the binary codeof which canbe downloadedfrom
our website,is suchthat the rotationsof a headof up to 40
degreedn all threeaxisof rotationcanbetracked.

The paperis organizedas follows. After presenting
the outline of our framework for affordablestereotracking
(Section2), we recapthe projective vision propertiesnvhich
male the framework possible(Section3). This is followed
by the descriptionof the stereoselfcalibrationprocedure



Figurel: Sterearackingwith two web-camerasThekey issueis
finding therelationshipbetweerthe cameras.

(Sectiond). Thenwe describehetrackingprocedureof the
frameavork andpresenthe experimentaresults(Section5).

2 Stereosystemsetup

In orderto presenta framework for doing stereotracking
with two arbitrary uncalibratedcameraswe will describe
theSteeoTacker developedby ourgroup,wherethisframe-
work is implemented.

The SteeoTradker allows a userto do high-level vi-
siontaskswith off-the-shelfvision equipment.It tracksthe
faceof auserin 3D with theaid of two ordinaryUSB web-
camerasndconsistf threemajormodules:1) sterecself-
calibration,2) facial featuredearningand 3) featuretrack-
ing. The setupof the systemis thefollowing.

A usermountstwo USB camera®n thetop of thecom-
putermonitor so that his faceis seenby both cameragsee
Figurel), afterwhich the userrunsthe selfcalibrationrmod-
ule of the SteeoTradker to acquiretherelationshipbetween
the camerasFor this the usercapturesis headat the same
time with both camerasat the distanceto be usedin track-
ing (Figure2). Whenthe stereocalibrationinformationhas
beencalculatedthe SteeoTadker makesuseof it to learn
robust facial features(Figure 3), andthen malkes useof it
againwhile trackingthefeaturesn 3D (Figure4).

Before proceedingto the descriptionof the calibration
procedurewhich is the basisof our stereotrackingrame-
work, we needto describenotationsand propertiesto be
usedthroughouthe paper

3 Projectivevision interlude

3.1 Points, lines and calibration matrix.

Accordingto the projective paradigm,every 2D pixel u =
[i, 4] of animageis asassociateavith the 3D vectorx =
[z,y, I]T which startsat the camereaorigin andgoesthough
to all 3D spacepointswhich areprojectedto the samepixel

ontheimageplane® A line in animageis representetby
3D vectorl whichis perpendiculato all pointsx belonging
totheline: 17x = 0.

The relationshipbetweenvectorx andpixel position
of apointin theimageis expresseds

x = K. Q)

whereui denotesa 3D vectorobtainedfrom a 2D vectoru
by addingoneasthelastelementMatrix K in this equation,
the simplified form of which is written below, is termedthe
calibration matrix of the camera.lt describegheintrinsic
parameter®f the camerathe mostimportantof which are
the centerof the image (i, jo) measuredn pixel coordi-
nates,andthe focal length of the cameraf, definedasthe
distancefrom the cameraorigin to the cameramageplane
measuredh pixels:

f 0
0 f Jo
0 0 1

K= @)

Computingthe calibrationmatrix of the cameraconsti-
tutesthe calibrationproces®of thecameraThegoal of self-
calibrationis to computethis matrix directly from anim-
agesequencavithout resortingto a formal calibrationpro-
cedure.Oneof thewaysto do this is by usingthe concept
of thefundamentamatrix.

3.2 Stereoand fundamental matrix

Whena 3D point X in spaceis obsened by two cameras,
it is projectedto theimageplaneof eachcamera.This gen-
erateswo vectorsx andx’ startingfrom the origin of each
camera.Thesevectorsarerelatedto eachotherthroughthe
equation

xTt x Rx' =0,

®3)

wheret is the translationvector betweenthe cameraposi-
tions and R is the rotation matrix. This equationsimply
stateghefactvectorsx, t andx’ arecoplanar In computer
vision, thisequationis known astheepipolarconstaint and
is usuallywritten as

xTEx' =0, where

(4)
(6)

The epipolarconstraintholdsfor arny two camerasetup
andis very importantfor 3D applicationsasit definesthe
relationshipbetweenthe correspondingpointsin two cam-
eraimages. For handmadestereosetupwith off-the-shelf

E =t x R istermedthe essentiamatrix.

1Some authors [11, 8] prefer using vector [z,y, f]T instead of
[z,7,1]T in orderto avoid the unbalancingf thevalues.



Figure?2: Imagescapturedoy two camerago be usedin selfcali-
bration. They shouldhave enoughvisualfeatures.

camerast and R arenotknown. If the camerasreuncali-
brated thenmatrix K is not known either In this case the
epipolarconstraintis rewritten, usingEq. 1, as

alFa=0 (6)
whered = [u,v,1]T and@’ = [v',«’,1]T definethe raw
pixel coordinate®f thecalibratedvectorsx andx’, andma-
trix F' definedas

F=KEKT (7)

is termedthe fundamentamatrix of the stereo.

Computingthe fundamentamatrix constituteshe cali-
bration processof the stereosetup. Next sectiondescribes
thisprocessn detailfor thecaseof low-qualitycamerasand
belon we describehe propertiesof the fundamentamatrix
to beusedin stereotracking.

3.3 Epipolar lines

Givena point u in oneimage,the fundamentaimatrix can
be usedto computea line in the otherimageon which the
matchingpointmustlie. Thisline is calledtheepipolarline
andcanbecomputedas
1, = Fu. (8)
It is this pieceof extra informationthat makestracking
with two camerasnuchmorerobustthantrackingwith one
camera.In orderto filter out bad matchesthe epipolarer-
ror, definedasthe sumof squaresf distancesf pointsto
their epipolarlines, canbe used[9]. Using Eq. 8, therela-
tionshipbetweerepipolarerrorp andfundamentamatrix £
canbederivedas

p =& ly)+d?u, 1)

~ (TR ©

1 1
(Fu)%—i—(Fu)g + (FTu’)f—i-(FTu’)g )

andthefollowing propositioncanbe usedto make tracking
morerobust.

Proposition: Provided that fundamentalmatrix F' of the
stereo is known,the bestpair of matdesu and u’ corre-
spondingo a 3D featureis theonethatminimizegheepipo-
lar error definedby Eq. 9.

4 Stereosystemselfcalibration

The calibrationproceduredescribedbelow is implemented
using the public domain Projective Vision Toolkit (PVT)

[18] andis basedon finding the correspondencem two

imagescapturedwith both camerasobservingat the same
staticscene Becauseff-the-shelflUSB camerasreusually
of low quality and resolution, extra careis taken to deal
with the bad matchesby applyinga setof filters andusing
robuststatistics. The descriptionof eachstepfollows.

Finding interest points. After two imagesof the same
scenearetaken, the first stepis to find a setof cornersor
interestpointsin eachimage. Thesearethe pointswhere
thereis a significantchangein intensity gradientin both
the z andy direction. A local interestpoint operator[26]

is usedand a fixed numberof cornersis returned. The
final resultsare not particularly sensitve to the numberof

corners. Typically there are in the order of 200 corners
foundin eachimage.

Matching corners and symmetry filter. The next step
is to matchcornersbetweenthe images. A local window
aroundeachcorneris correlatedagainstall other corner
windows in the adjacentimage that are within a certain
pixel distancg32]. Thisdistancerepresentanupperbound
on the maximumdisparity and is setto 1/3 of the image
size. All corner pairs that passa minimum correlation
thresholdare then filtered using a symmetrytest, which
requiresthe correlationbe maximum in both directions.
Thisfilters out half of the matchesandforcestheremaining
matchego be one-to-one.

Disparity gradient filter. The next stepis to performlocal

filtering of thesematches We usea relaxation-like process
basedon the conceptof disparity gradient[12] which mea-
suresthe compatibility of two correspondencdsetweenan

imagepair. It is definedastheratio

dgr = |da — dp|/|dase], (10)

whered, andd;, arethe disparityvectorsof two corners,
d.y+b is the vectorthat joins midpointsof thesedisparity

veétors,and| - | designateshe absolutevalue of a vector
The smaller the disparity gradient, the more the two
correspondencen agreementvith eachother Thisfilter is
very efficient. At avery low computationatost,it removes
a significantnumberof incorrectmatches.

Usingrandom sampling. Thefinal stepis to usethefiltered
matcheso computethe fundamentamatrix. This process
mustberobust, sinceit still cannot be assumedhatall fil-
teredcorrespondenceare correct. Rolustnesds achieved
by usinga randomsamplingalgorithm. This is a “generate



andtest”processn whichaminimal setof correspondences,
thesmalleshumbemecessaryo defineauniquefundamen-
tal matrix (7 points),arerandomlychosen25, 22]. A fun-
damentalmatrix is then computedfrom this bestminimal
setusingEq. 6. The setof all cornersthat satisfythis fun-
damentamatrix, in termsof Eq. 9, is calledthe supportset.
The fundamentamatrix with the largestsupportsetis used
in stereotrackingBeforeit canbeusedhowever, it needgo
be evaluated,becauseobust and precisetracking tracking
is possibleonly underthe assumptionghat the computed
fundamentamatrix correctly representshe currentstereo-
setup.

4.1 Evaluating the quality of calibration

The evaluationis doneusing two ways: analytically - by
examiningthesizeof thesupportset,andvisually - by visual
examinationof the epipolarlines.

It hasbeenempiricallyobtainedhatfor thefundamental
matrix to becorrectit shouldhave atleast35 matchesn the
supportset. If their numberis less,it meansthat eitheri)
therewerenot enoughvisualfeaturegresenin theimages,
or ii) camerasare locatedtoo far from eachother In this
casecamerahave to berepositionedr someextra objects,
in additionto the head,shouldbe addedin the camerdield
of view andthecalibrationprocedureshouldberepeated.

Figure3 shaws the epipolarline (on theright side)cor-
respondingto the tip of the nose(on the left side) asob-
tainedfor the sterecsetupconsistingof two Intel USB web-
camsshowvn in Figurel. As canbe seenjt passesorrectly
throughthenose thusverifying thecorrectnessf thefunda-
mentalmatrix andpresentinga usefulconstraintor locating
thenosein thetrackingstage.

4.2 Finding the calibration matrix

Knowing matrix £' allows oneto computematrix K. Under
the assumptionshat the intrinsic parametersf both cam-
erasarethe same the approachwe useis thatof [17]. It is
basedon the fact that matrix E, definedby Eq. 5 andre-
latedto matrix F' throughEg. 7, hasexactly two non-zero
andequaleigervalues. Theideais to find suchcalibration
matrix K that makesthe two eigervaluesof E ascloseas
possible.Giventwo non zeroeigervaluesof E: ¢; ando,
(01 > 02), considetthedifference(oy — 02)/o1.
Givenafundamentamatrix F', selfcalibrationproceeds
by finding sucha calibrationmatrix thatminimizesthis dif-
ference. This is an optimization problemwhich is solved
by dynamichill climbing gradientdescenapproactj16]. In
[24] it is shavn that this procedurewhile quite simple, is
notinferior to more complicatedapproacheso selfcalibra-
tion, suchasthoseusingthe Kruppa's equation13].
Knowing matrix K and the focal length allows one to
reconstrucspatialrelationshipof the obsenedfeatures For

Figure3: LearningthefeaturesusingtheepipolarconstraintsThe
nosefeaturemustlie ontheepipolarline.

the tracking processhowever, this information is not re-
quired.

5 Stereofeature tracking

We usethe patternrecognitionparadigmto represent fea-
tureasamulti-dimensionaliectormadeof featureattributes.
In the caseof image-basedeaturetracking, the featureat-
tributes are the image intensitiesobtainedby centeringa
speciallydesignegeepholanaskonthe positionof thefea-
ture (asin [6]).

Themajoradvantageof stereotracking,e. trackingwith
two cameraspvertrackingwith onecamerés thatof having
anadditionalepipolarconstraintwhich ensureghatthe ob-
senedfeaturesbelongto arigid body(seeSection3.3). Us-
ing this constraintallows usto relaxthematchingconstraint
usedto enforcethe visual similarity betweenthe obsened
andthetemplatefeaturevectors.The matchingconstraints
the main reasonwhy feature-basettackingwith onecam-
erais notrobust,andrelaxingthis constraintmakestracking
muchmorerobust.

5.1 Featurelearning

In thiswork, we arenot concernedvith automaticdetection
of facial features. All featuresare manuallychosenat the
learningstage.During this stage by clicking with a mouse
auserselectsafeaturein oneof the pairimages(seeFigure
3). This generatesn epipolarline in the otherimageand
thetemplatevectorsof boththeselectedeatureandthebest
matchof the featurein the otherimagelying on the epipo-
lar line arestored. The examplesof learnttemplateanbe
seenn Figure4 underneatlthefaceimages.By visually ex-
aminingthe similarity of thesetemplatesa usercanensure
thatthe stereosetupis well calibratedandthatthe epipolar
constrainindeedprovidesa usefulconstraint.

Several featurescanbe selectedor tracking. However
oneof thesefeatureamustbethetip of the nose.Thetip of
thenoseis averyuniqueandimportantfeature.As shovnin
[5], dueto its corvex shapethis featureis invariantto both
therotationandthescaleof thehead.If detectiorof theface



orientationis not required,thenrobustfacetrackingin 3D
canbeachievedusingthis featureonly.
Otherfeaturesnayincludecorventionaledge-basefka-
turessuchasinner cornersof the brows andcornersof the
mouth. At leasttwo of thesefeaturesarerequiredin order
to track the orientationof the head. Thesefeaturesare not
invariantto the 3D motion of the head. Therefore,in or-
derto make the trackingof thesefeaturesobust, the rigid-
ity constraintwhich relatestheir positionsto the noseposi-
tion is imposed.This constrainis computedvhile selecting
the features. Another constraintusedin stereotrackings
thedisparityconstraintwhich definesthe allowabledispar
ity valuesfor featureduring the tracking, thuslimiting the
areaof searchBoththerigidity andthedisparityconstraints
arecomputedduringtheselectiorof featuresn thelearning
stageandcanbeengagedr disengageduringthetracking.

5.2 Tracking procedure

Eachselectedfacial featureis tracked usingthe following
four-stepprocedure.

Stepl. The areafor the local searchis obtainedusing
therigidity constraintandthe knowledgeof the nosetip po-
sition. Whentherigidity constraintis not engagedr when
the featureis the nose,the local searchareais setaround
the previouspositionof thefeature.If thisknowledgeis not
available(asin the caseof mistracking) thenthesearcharea
is setto theentireimage.

Step2. A setof N bestcandidatematches{us} is gen-
eratedin bothimageshy usingthe peepholemaskandcor-
relatingthe local searchareawith templatevectorV'f learnt
in the training. In orderto be consideredvalid, all candi-
datematchesare requiredto have the correlationwith the
templatefeaturelarger thana certainthreshold. In our ex-
perimentsthe allowableminimum correlationis setto 0.9.

Step3. Out of N2 possiblematch pairs betweentwo
images, the best M pairs are selectedusing the cross-
correlationbetweenthe images. In our experiments,N is
setto 10and M is setto 5. IncreasingV or M increaseshe
processindime, but makestrackingmorerobust.

Step4. Finally, the propositionof Section3 is usedand
the matchpair that minimizesthe epipolarerror p defined
by Eq. 9, is returnedby the sterearackingsystem If there-
turnedmatchhastheepipolarerrorlessthenacertainthresh-
old, thanthefeatureis consideresguccessfullfracked. Oth-
erwise,the featureis considerednistracled. The value of
themaximumallowableepipolarerror p,, ., depend®nthe
quality of stereoselfcalibrationand shouldbe determined
duringthe learningstageby observingthe epipolarlines at
differentpartsof theimage.In theexperimentpresentedh
this paperit is setequalto 5 pixels.

Whena featureis successfullytracked, its 3D position
can be calculatedusing the essentialmatrix £ asin [9].
The distancebetweenthe camerasan be either measured

Figure4: TheSteeoTadker atwork. Theorientationandscaleof
the virtual man (at the bottomright) is controlledby the position
of theobseredface.

by handor setequalto one.In thelattercasethereconstruc-
tion will be known up to a scalefactor which is sufficient
for mostapplications

5.3 Experiments

The tracked facial featuresprovide the information about
the position and the orientationof the headwith respect
to the cameras.This information can be usedto control a
2D objecton the screen,suchasa cursoror a turretin a
aim-n-shootgame(asin [7]), or it canbe usedto control
a 3D object, examplesof which canbe found in computer
gamesand avatarlike computergenerateccommunication
programgasin [19]). The SteeoTacker systemwhichwe
have developed,allows oneto testthe applicability of the
proposedstereotrackingechniqueto either of theseappli-
cations.

Figure4 shavs two imageswhich are controlledby the
motion of the head. Theimageon the bottomleft is there-
projectionof thedetectedeaturesontothe2D imageplane.
Our experimentsshaw thatby thinking of a noseasa point-
ing device, onecaneasilypin-pointto any pixelsontheper
spectve view screen.Thesystemis robustto therotationof
thehead.This malkesit possibleto draw a straightline with
the nose representetby the lowestvertex of thetrianglein
thefigure, by simply rotatingthe head.

Theuserinterfaceof the SteeoTacker allowsonealsoto
changetheperspectieview of thefeaturego thetop-dowvn.
view. Thisis usedto evaluatethe potentialof usingthethird
dimensionof thetrackedfeaturesfor controllingthe sizeof
a cursoror anothervirtual objecton the screen.Theimage
onthebottomright of Figure4 shows avirtual man,the po-
sitionof whichin avirtual 3D spacds controlledby themo-



tion of the users head;the scaleof the manis proportional
to thedistancebetweerthe featuresandthe cameraandthe
roll rotation of the man coincideswith the roll rotation of
thehead.

Dueto therobustnes®f thestereotrackingthereis quite
a wide rangeof headmotion which can be tracked. For
example,for the setupshawn in Figure 1, the experiments
shaw thatwithin a rangefrom 20 cm to 60 cm the headis
tracked successfully The trackinghowever becomdessro-
bustto therotationof thehead asa usermovesfurtherfrom
theoriginal position.

Another obsenation is that stereotrackingwith low-
guality camerasioesnot allow oneto retrieve the panand
tilt rotationof thehead.This howeverdoesnotcomeassur
prise,if we recallthatthe depthcalculationerrordueto low
resolutionof theimagecanbe ashigh as10% of the mea-
sureddepthdistancedependingnthepositionof thefeature
[4,21].

The userinterface of the SteeoTadker allows one to
evaluatethe robustnessspeedandprecisionof stereotrack-
ing with respectto the internal parametersand constraints
of tracking. Theseparametergan be changedduring the
trackingstageandincludealreadythe mentionedminimum
allowablecorrelation thenumberof featurecandidate§.V),
the numberof refinedmatchesafter cross-correlatior{/),
maximumepipolarerror, andalsothesizeof theareafor the
subpbel refinementwhich canbe usedfor thefeaturegos-
sessinghe continuity property(see[5]), andthe maximum
color differencebetweerthe storedfeaturepixel anda pixel
being scanned. The last constraintis dueto the fact that
templatematchingin our systems donewith black-n-white
images;addingthis constraintallows us to usethe colour
informationto reducethe numberof featurecandidates.

In addition,thefacialfeaturescanbe checledin andout
for trackingusingthe menuof the program. The disparity
rigidity and epipolar constraintscan also be engagedand
disengagedising the menu. While trackingis performed,
the SteeoTacker outputsstatisticssuchas minimum and
maximumvaluesof correlation cross-correlatioandepipo-
lar errorsof the detectedeaturesaswell asthe detected3D
positionandroll orientationof the headandthe positionof
thecursorcontrolledby the head.

While the paperpresentonly the snapshot®f our ex-
perimentsfull MPEG videosof the SteeoTradker at work
areavailableat ourwebsite.Thebinarycodeof theprogram
canalsobe downloadedrom thewebsite.In orderto runit,
auserwill only have to have two USB webcamsonnected
to acomputer In our experimentswe usedtwo Intel USB
web-camerasOtherUSB webcamssuchasLogitech,Cre-
ative and 3Com, were alsotried. Accessingthe imagesis
doneusingthe DirectX interface. The resolutionof theim-
ageds 320by 240. Lowerresolutionof 160by 120wasalso
tried andfoundto be sufficient for preciseandrobusttrack-
ing. Imagesmoothingis doneusingthe Intel OpenSource

CV library [1]. On a Pentiumlll 800 MHz processarall
processingakes0.10msperframein average.This allows
oneto do steredfacetrackingin realtime.

Figure5 shaws a typical rangeof headmotionwhich is
tracked usingour framework alongwith the positionof 2D
and 3D objectscontrolledby the headmotion: tilt motion
(a),panmotion(b), roll motion(c), andmotionfurtherfrom
thecameragd). Yellow boxesaroundthe featuresshow the
areador local searchof thefacialfeatures Usingthreefea-
turesis found most optimal for recovering the orientation
of the head;inner cornersof the brows beingmore prefer
ableto track thancornersof the mouth. Usingfive features
slowed down the processingand often resultedin breaking
therigidity constraint. The figure showvs well the precision
andtherobustnesof sterecotracking. By switchingon and
off the epipolarconstraintwe wereableto obsene thatus-
ing onecameradoesnot allow oneto detectfeaturesin the
imageslike thoseshawn in Figure 5.(c)(d), whereasusing
two cameragloes.In asimilar fashion by switchingonand
off therigidity constraintwe could seehow stereotracking
allows oneto track robustly even suchnon-rolustfeatures
ascornersof thebrows.

We have experimentedwith the differentbaselinese-
tweenthe camerasandthe distanceof about10-20cm ap-
pearsto bethe mostoptimal. Largerbaselinesesultin too
few matchesneededto computethe fundamentalmatrix,
while smallerbaselinesauselarge epipolarerrors. It was
alsoobsenedthatthe alignmentof the camerass not very
critical for our framework, whichis is attributedto usingthe
rotationinvariantcorvex-shapenosefeatureandthe combi-
nationof the epipolarconstraintwith therigidity constraint.

6 Conclusions

In this paperwe defineda framework for trackingfacesin
3D usingtwo genericweb-camerasThe advantagef us-
ing two cameragtwo “eyes”) for facetracking,asexhibited
by our SteeoTradcker, aresummarizedelon. Onecantrack
features:

1. In low qualityimages— Low costplug-n-playUSB cam-
erasareused.

2. More preciselywith sub-piel accurag. — Onecanmove
the screencursorwith his/herheadone pixel at time on a
360x240grid.

3. More robustly, with respectto scaleand rotations. —
Featuresiretrackedfor up to almost40 degreesof rotation
of headin all threedirections: “yes"(up-dawn), “no”(left-
right), and“don’t know” (clockwise).

4. In realtime. — After two camerashave beencalibrated,
the work of tracking becomessimpler Calibrationcanbe
doneautomaticallyassoonasthe headis seenin bothcam-
eras.

5. In 3D. - 3D coordinatesandtheroll angleof theheadare



recovered.

Projectve vision androbust statisticsenableus to deal
with uncalibratedcameragi.e. camerador which the in-
trinsic parametersuchasfocal length, optical centeretc.
arenotknown), whicharethemostcommoncamera®nthe
market. Thegainin theaccurag androbustnesss achiered
by usingtwo camerasvhereonly onecamerahasbeenused
in the past. It is thus believed that the proposedtechnol-
ogy brings high-level computervision solutionscloserfor
themarlet.
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Figure5: Snapshotsf experimentsshaving the robustnessndprecisionof the stereotrackingiccomplisheavith two webcams.



