
Robust 2D Tracking for Real-Time Augmented Reality

Shahzad Malik 1, Gerhard Roth 2, Chris McDonald 1
1 School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6

2 Computational Video Group, IIT, National Research Council, Ottawa, Canada, K1A 0R6
http://www.cv.iit.nrc.ca/research/ar

Abstract
Vision-based registration techniques for augmented reality
systems have been the subject of intensive research recently
due to their potential to accurately align virtual objects
with the real world. The downfall of these vision-based
approaches, however, is their high computational cost and
lack of robustness.

This paper describes the implementation of a fast, but
accurate, vision-based corner tracker that forms the basis
of a pattern-based augmented reality system. The tracker
predicts corner positions by computing a homography
between known corner positions on a planar pattern and
potential planar regions in a video sequence. Local search
windows are then placed around these predicted locations
in order to find the actual subpixel corner positions.
Experimental results show the robustness of the corner
tracking system with respect to occlusion, scale,
orientation, and lighting.

Keywords: Corner tracking, pattern tracking, blob finding, robust,
computer vision, augmented reality.

1 Introduction

Unlike virtual reality, which encompasses a user in a
completely computer-generated environment, augmented
reality is a technology that attempts to enhance a user’s
view of the real environment by adding virtual objects, such
as text, 2D images, or 3D models, to the display in a
realistic manner.

Clearly, the realism that a user will experience in an
augmented reality environment is directly related to the
stability of the registration between the virtual and real-
world objects; if the virtual objects shift or jitter, the
effectiveness of the augmentation is lost.

Vision-based augmented reality systems rely on extremely
accurate optical trackers in order to obtain the required
registration stability. Additionally, these accurate trackers
must operate in real-time.

One of the most promising vision-based augmented reality
techniques involves tracking a planar pattern in real-time
and then augmenting virtual objects on top of the pattern

based on its pose. In [5, 7, 9, 10, 14], black and white
planar patterns are tracked resulting in relatively stable
registrations, but the tracking algorithms fail to provide any
robustness to partial pattern occlusions. Specially arranged
coloured blobs are tracked in [8] that can handle partial
occlusions for a brief period of time via Kalman filtering,
but the blob centroids are less reliable at different scales or
plane orientations. Other techniques address robustness
and occlusion, but only in hybrid configurations involving
expensive magnetic or inertial trackers and stereo
configurations [1, 2, 12].

In this paper we describe the implementation of an optical
corner tracker for an augmented reality system that is
precise, fast, and robust, and which can be implemented
using a standard, consumer-level camera and PC. In
Section 2 planar homographies are first reviewed since they
form the mathematical core of the 2D tracker. Section 3
then provides a description of a fast and reliable region
detector that allows the system to self-identify
predetermined planar patterns consisting of black and white
corners. Section 3.2 then proposes an accurate corner
tracker which uses a robustly computed homography to
predict corner positions that are then refined using localized
search windows. Experimental results are then presented in
Section 4, which show the tracker’s stability and robustness
to occlusion, scale, orientation, and lighting changes.
Additionally, a comparison between corner tracking and
commonly used blob tracking techniques is made.

2 Planar Homographies

Tracking planar patterns are advantageous since they define
a convenient world coordinate space that can be used for
augmentations (Figure 1).

Since we will be tracking such planar patterns, we can make
the assumption that they are located on the Z=0 plane in
world (pattern) coordinates. Thus we can associate our
original pattern with the viewed pattern in a video frame by
a 2D-to-2D projective warp. In other words, if x = (x, y, 1)
is a homogeneous coordinate in pattern space, and x΄ = (x’,
y’, 1) is the associated coordinate in image space, x ↔ x΄
defines a correspondence that is related by













=













11
'
'

y
x

Hy
x

where the 3x3 matrix H is a planar homography.

This gives us

x’ (h31x + h32y + h33) = h11x + h12y +h13

y’ (h31x + h32y + h33) = h21x + h22y +h23

where hij is the i,j-th element of H.

Given at least four such correspondences, we obtain a
system of eight linear equations that can be used to solve
for the elements of H:

0h =

































−−−
−−−
−−−
−−−
−−−
−−−
−−−
−−−

'''1000
'''0001
'''1000
'''0001
'''1000
'''0001
'''1000
'''0001

4444444

4444444

3333333

3333333

2222222

2222222

1111111

1111111

yyyxyyx
xyxxxyx
yyyxyyx
xyxxxyx
yyyxyyx
xyxxxyx
yyyxyyx
xyxxxyx

where h is a 9-element vector containing the hij elements in
the form h = [h11 h12 h13 h21 h22 h23 h31 h32 h33]T.

Since this matrix equation is in the form of Ah=0, the
solution is the null space of A and can thus be computed
using known methods, such as singular value
decomposition [13].

The next section outlines how the proposed system makes
use of such homographies in order to track known planar
patterns in video sequences.

Figure 1 – World space defined by a planar pattern

3 System Outline

In our 2D tracker, planar patterns are identified in a live
video stream, and predetermined corner features for the
detected pattern are found within each frame of video and

tracked in real-time. Figure 2 shows some example
patterns.

Figure 2 – Example of 2D planar patterns used for
augmentations.

Patterns consist of a thick black border, inside which white
rectangles are evenly distributed. The corners of the white
rectangles are stored in a data file that is associated with the
pattern upon system startup. Although no strict
arrangement of rectangles is enforced, it is important to
generate patterns that are uniquely identifiable with respect
to other existing patterns, as well as under 90 degree
rotations. Black and white patterns are preferred over
colour due to their high contrast, which is important for
region detection and extraction purposes.

The following sections cover the 2D tracker in more detail.
There are two modes of operation for the tracker: Search
Mode, and Tracking Mode.

3.1 Search Mode

Before known individual corner features can be tracked
from frame to frame, the system must first uniquely identify
any valid pattern(s) within the video frame. This is known
as Search Mode, and is the initial state of the augmentation
system. Using a method similar to [10], the search
proceeds as follows:

! Threshold the frame into a binary image. Dynamic
thresholding provides the best results, but static
threshold values are also sufficient in known
environments.

! Find connected regions of black pixels and only accept
regions whose bounding boxes meet size and aspect
ratio thresholds of our known black-bordered patterns
(in order to reject invalid regions).

! Find the four strongest black corner pixels of the
connected region and generate a polygon consisting of
these vertices in clockwise order.

! Compute a homography from the known boundaries of
the original pattern to the polygon corners.

! Using this homography, create a new image consisting
of unwarped pixels from the video frame.

 World (pattern) coordinates

Camera coordinates

Image coordinates

! Find the best matching pattern by comparing the
unwarped image with images of the known patterns (via
simple binary image subtraction).

Figure 3 shows an example of unwarping the pixels within a
connected region, and finding the best matching original
pattern. Note that four homographies must be computed for
each region, followed by four image comparisons, since
there are four potential orientations of the original pattern.
As mentioned earlier, the orientation of the original pattern
should be unambiguous when viewed at 90, 180, and 270
degrees.

Figure 3 – (a) Captured video frame, (b) unwarped
region from video, (c) best matching known pattern.

Once we have successfully identified a valid region and its
associated pattern, we are ready to begin local tracking of
the individual corner features.

3.2 Tracking Mode

Tracking Mode consists of the following three steps:
Corner Prediction, Corner Detection, and Homography
Refinement.

3.2.1 Corner Prediction

Based on the homography computed in the previous frame,
we transform all known corner positions for the detected
pattern from world space into the current image space.
Each of the transformed positions defines a predicted
corner location, but these are not always exact due to
inaccuracies in the homography. Therefore a local search
window is placed around the predicted corner location, and
the actual corner must be in this window.

Assuming temporal coherency, the search window for each
corner is also translated by an amount equal to any motion
that corner experienced in the previous two frames.

The search box size represents how much pixel movement
the tracker can tolerate from frame to frame, assuming
smooth motion. Increasing the search box allows for more
movement, but increases the chances of multiple corners
being found in the search box (as discussed in the next
section). Conversely, decreasing the search box size
reduces the chance of multiple corners, but increases the

chance of tracker failure due to rapid motion of the pattern.
Our system works well with 9x9 boxes on normalized
320x240 images, with the overall augmentation system
operating at 20 Hz.

3.2.2 Corner Detection

To find the actual corner locations with subpixel accuracy,
we do the following for each predicted corner location:

! Apply a Harris corner finder [6] with subpixel accuracy
on the local search window (see Appendix A). An
approximation to the Harris corner finder, as presented
in [3], can be used which increases performance due to
the removal of a square root operation for each pixel
location in the search window.

! Extract the strongest corner within the subwindow to
determine the actual corner position that corresponds to
the original corner from the pattern. If no corner is
detected, mark the corner’s tracking status as having
failed for this frame. This could occur due to the corner
being off the edge of the screen or temporarily
occluded.

Note that at far distances, the subwindow may overlap more
than one corner feature from the original pattern (as
depicted in Figure 4). Extracting only the strongest corner
from the Harris corner finder would thus cause different
pattern corners to incorrectly correspond to the same image
location. In this case, choosing the closest corner to the
predicted location is a slightly better heuristic. For optimal
results, neighbouring corner positions and edge properties
from the original pattern should be taken into account to
determine the best corner location, as outlined in [4].

Figure 4 – Multiple potential corners in a single
predicted search window.

3.2.3 Updating the Homography

Using the set of subpixel corner locations found in the
current frame, a new set of corner correspondences, {x ↔
x΄}, from the original pattern into image space is computed.
Using the well-known RANSAC approach as outlined in
[11], a new homography is determined as follows:

! Randomly sample four non-collinear x ↔ x΄
correspondences.

(a) (b) (c)

! Compute H using this sample.

! For all correspondences, compute the distance between
x΄ and Hx.

! Count the number of pairs for which the distance is
below some threshold. A value between 2.0 and 4.0
works well for our system.

! Store the H which has the highest number of inliers IH.

! Refit the homography H using these inliers.

The motivation behind random sampling is to remove
inaccurate or mismatched corner locations from the
homography computation. This allows the homography to
be robust to partially occluded features, which is important
for subsequent corner predictions.

The number of random samples is capped at the maximum
number of known corners Imax for the detected pattern.
Most of our patterns consist of four to eight white
rectangles, resulting in 16 to 32 corners. In order to reduce
the number of samples, however, a threshold is set which
allows random sampling to stop if the highest number of
inliers IH is above the following threshold

maxQH ITI ×≥

where TQ defines a quality measure between 0 (low) and 1
(high). A value above 0.75 seems to provide relatively
stable homographies.

The best homography computed after random sampling is
then used as the corner predictor in the next frame. Note
that random sampling can also fail under the following
instances:

! There are less than 4 non-collinear x ↔ x΄
correspondences.

! The best computed H fails to meet our TQ criteria

! IH falls below 4, which is the minimum number of
correspondences required for computing H in the next
frame.

In such cases, the tracking system reports tracker failure
and reverts back to Search Mode.

The basic idea behind refining the homography via random
sampling is to increase the robustness of the pattern tracker.
With multiple corners being tracked simultaneously,
occlusions of a subset of the feature points should have
little or no effect on the corner prediction in the next frame.
For example, if a detected pattern consisting of 24 corners
is being tracked, the homography should still be able to
predict corner positions for the next frame even if
approximately 16 corners are currently occluded by a user’s
hand. The assumption is that the other 8 corners
interspersed around the pattern area are sufficient to

accurately determine the pattern’s current orientation. In
fact, 4 unoccluded, non-collinear corners are all that is
necessary. The predicted locations for the occluded corners
will still be searched in upcoming frames so as soon as the
occlusion stops (i.e. the user’s hand is removed from the
pattern) all 24 corners will be detected again.

3.3 Tracker Summary

Figure 5 outlines the basic operation of the 2D tracking
system.

Figure 5 – Block diagram of the augmentation system

Upon initialization, the system is in Search Mode and is
continuously attempting to find a known planar pattern in
each frame of video. Once a valid pattern is detected, a
homography is computed from the four corners of the
original pattern and the detected four corners of the region
in the video. The system then enters Tracking Mode, which
uses the previous homography to predict the locations of
the corner features for the pattern. These corners are then
used to compute a new homography for the next frame,
even if the pattern is experiencing significant occlusion.
Upon tracking failure, the system returns to Search Mode,
which attempts to recover the entire pattern again for
further tracking.

MPEG videos of the tracking process can be found on our
web site. The software itself can also be downloaded from
this page, along with the patterns to enable anyone to test
the operation of the tracking and augmentation system.

4 Results and Discussion

4.1 Performance

One of the major design goals of our augmented reality
system is real-time performance on standard PCs using off
the shelf USB camera hardware. The current
implementation of our tracking system uses OpenGL to
augment simple 2D textures and 3D objects onto the planar
patterns at 20Hz on an Intel Pentium 3 800MHz PC
equipped with an ATI Rage128 Video card and an Intel
CS110 USB camera. Augmentations are currently
displayed on a desktop monitor, but for immersive
applications we will eventually attach the camera to a head-
mounted display.
In order to obtain an accurate estimate of the Search Mode
time, we modified the implementation to always remain in
Search Mode and use the computed homography to
augment 2D polygons onto the pattern.
The current breakdown of average processing time per
frame when viewing a static planar pattern consisting of 24
corners is as follows:
Search Mode: 29.1ms
Tracking Mode: 10.7ms
Augmentation Time: 2.1ms

Clearly, the global search method is significantly slower
than tracking 24 localized corner features. However, the
system is usually in Tracking Mode so performance is
directly related to the number of corners being tracked; the
more corners we have, the longer it takes for the tracker to
operate. Figure 6 shows tracking times for a set of patterns
with varying corner counts. As can be seen, processing
time increases approximately linearly with respect to the
number of corners that need to be tracked.

3.2

10.7

8.3
6.8

16.1

0
2
4
6
8

10
12
14
16
18

7 17 20 24 40

Corners

Tr
ac

ki
ng

 T
im

e
(m

s)

Figure 6 – Corner Tracking Performance

4.2 Tracking Accuracy

The stability and accuracy of the homography is directly
related to the stability and accuracy of the augmented

objects. In other words, if the homography cannot
accurately recreate the orientation of the pattern in screen
space, then the pose computations will be similarly
affected. In order to test the stability of the system, all
original pattern corners x are transformed by H, and the
distance between the computed position Hx and the
detected position x΄ is determined. The average of these
distances over all correspondences is the average
reprojection error REavg, represented mathematically as

N

H'
RE

N

i
ii

avg

∑
=

−
= 0

xx

where N is the total number of corner correspondences.
Our current implementation exhibits an average
reprojection error between 0.8 and 1.4 pixels with various
patterns (all corners being tracked successfully), which is
quite good for our normalized 320x240 images and a
standard USB camera. Scale and orientation of the pattern
have no apparent effect on the error, provided all corners
continue to be tracked successfully. As soon as some
corners become occluded, however, the reprojection error
begins to increase.

4.2.1 Occlusion Handling

One of the main advantages of our tracking approach is the
ability to handle significant amounts of occlusion. Figure 7
shows a 17 corner pattern experiencing approximately 30%
occlusion. The tracker can still detect enough corners so
that a virtual 2D image can be correctly augmented onto the
plane.

Figure 7 – Successful augmentation onto a partially
occluded pattern

Even under motion, the prediction scheme allows corners to
be correctly recovered after temporary occlusions. Figure
8a shows a pattern with all of its 17 corners being tracked
successfully (indicated by green lines). Figure 8b then
shows a hand occluding two of the corners, with red lines
denoting the predicted locations. While occluded, the
pattern is rotated slightly such that one of the occluded
corners becomes visible again. The non-occluded corner is
then recovered, as depicted in Figure 8c. Note that the
other corner is still being occluded, but the predicted

location has changed after rotation. After removing the
hand from the scene, the predicted location for the
remaining corner allows it to be recovered, as depicted in
Figure 8d.
One interesting observation was the gradual decrease in the
stability of the homography as more corners become
occluded. Predicted locations for corners begin to jitter
significantly when the corner counts fall below 10 or so.

Figure 8 – Corner recovery from occlusion after pattern
motion

4.2.2 Effects of Scale

The major advantage in using corners for tracking is that
corners are invariant to scale. The corner tracker can thus
continue to track patterns at a large range of distances from
the camera. This is where a tradeoff must be considered
between allowable viewing distances and allowable motion.
To allow viewing at large distances, the search box should
be small to reduce the chance of multiple corner detection.
However, this affects the ability to track fast movements of
the pattern when viewed close-up. On the other hand, if the
search box size is set too large, significant motion is
allowed from frame to frame but the corner finder will fail
when viewing the pattern further away.
One possible approach to solving this problem is computing
a dynamic search box size which changes based on a
pattern’s distance from the camera. If the pattern is
determined to be far from the viewer, reduce the search box
size under the assumption that 1) significant motion of the
pattern has a smaller effect in screen space, and 2) corners
in the pattern will be closer together. If the pattern is found
to be close to the camera, increase the search box size since

the chance of multiple corner detections is low and pattern
motion has more effect in screen space.
Currently, patterns must be visible in at least 25% of the
view, with no occlusions, in order for Search Mode to lock
onto the pattern. This can be adjusted based on size and
aspect ratio thresholds. Once the system proceeds into
Tracking Mode, the pattern is still able to be tracked when
it occupies between 10% and 150% of the video image on
average, depending on the number and distribution of the
corner features.

4.2.3 Effects of Orientation

Due to perspective distortion, a square on the original
pattern does not necessarily remain square when viewed at
a sharp angle and projected into image space. Thus,
corners will change their shape which affects the corner
finder’s detection ability. However, this is not a problem
since the Harris corner detector relies on finding intensity
changes in two directions, which are still evident even at
severe orientations [13].

Figure 9 – Tracking under severe rotation

The major source of orientation problems is once again the
search box size. It plays a key role since corner features on
a planar region begin to converge onto other corners in
screen space. For example, Figure 9 shows a 24-corner
pattern undergoing a gradual rotation of 90 degrees. As can
be seen, the corner detection begins to deteriorate since
corners are beginning to enter search boxes for other
corners. As expected, the average reprojection error of the
homography begins to increase as more corners begin to
converge. However, as Figure 9 shows, the tracking
continues up to almost 75-80 degrees, which is quite robust
for many types of augmentations.

(a) (b)

(a) (b)

(c) (d)

(c) (d)

4.2.4 Variable Lighting Conditions

Another favourable property of the corner feature for
tracking purposes is its robustness to lighting. Since
intensity changes in two directions form the basis of corner
finding, no special considerations need to be taken into
account from the tracker’s perspective in order to handle
significant lighting changes or shadows. Therefore, as long
as the black and white features on the planar pattern are
somewhat distinguishable, the corner tracker continues to
compute an accurate homography, even under dramatic
changes in lighting.

4.3 Comparison to blob trackers

The homography-based tracking approach described in this
paper could work with black and white blob features on
planar patterns just as it does with corners. However, we
have found corners superior to blobs due to their occlusion,
scale, orientation, and lighting advantages.
Up till now, blob-based trackers were the most popular
tracking primitive for vision-based augmented reality
systems. Therefore we conducted a set of experiments
aimed at comparing blob trackers with the corner tracking
system.

4.3.1 Blob Performance

The most obvious reason for using blobs over corners
involves performance. Detecting corners has traditionally
been considered an expensive operation, while blob finding
algorithms are known to be very fast since they primarily
deal with finding connected regions of similar pixels. By
replacing the “Corner Detection” component of Tracking
Mode with a “Blob Detection” system (Figure 5), the
overall tracking time should theoretically be reduced.
Implementation results, however, showed no significant
changes in tracking time. This is largely due to the larger
search box requirement of blobs, since blobs are typically
larger than the 9x9 window used for corners.

4.3.2 Blob Occlusion

Figure 10 shows a finger partially occluding a blob. As a
result, the centroid location for the occluded blob will
become offset from its correct location. If the foreground
pixels are added to the search area of the occluded blob,
then the blob’s pixel set is the union of occluding object
pixels and actual blob pixels. On the other hand, if the
occluding object adds background pixels to the blob when
overlapping it, the blob’s pixel set will fail to contain all
pixels that are needed to properly represent the blob (as in
Figure 10). In each instance, the blob’s position, size, and
orientation computation has significant error. A blob-based
tracker that handles partial occlusions by using two-colour

blobs (an inner blob surrounded by a different coloured
outer ring) is described in [12]. This allows the system to
more uniquely detect blobs in a scene, as well as predict the
entire blob shape when it is partially occluded (assuming
the two colours are partially visible). The disadvantage
with this approach is the fact that colour image thresholding
must be used, which is prone to errors.

4.3.3 Blob Scale

As the camera’s distance from a blob increases, the blob’s
pixel set decreases. Thus, the same blob has less
representation in pixel space leaving less accuracy for
characteristics such as position, shape and relative size in
the image. At greater distances the pixel set can even be
empty, leaving no traceable feature. Corners, on the other
hand, are robust to scale as discussed in Section 4.2.2 (the
search box issues are a separate matter that would also be
apparent in a blob-based tracking scheme.)

Figure 10 – Blob detection and centroid location (left
image is original video frame, right image is after
binary thresholding): (a) no occlusion, (b) partial
occlusion has shifted the centroid (the white crosshair)

4.3.4 Blob Orientation

Similarly, orientation of the camera also degrades a blob’s
pixel set by reducing the representation of the blob in the
image compared to that in real space. Additionally, for
large blobs being viewed at close range, the computed
centroid position does not take perspective distortion into
account. Thus the actual centre of a blob in world space
and the corresponding blob centre in image space may not
necessarily correspond. This would affect relative blob
positions on a planar pattern, resulting in inaccuracies in
homography computation.

(a)

(b)

4.3.5 Blob Lighting

Since blob detection typically involves thresholding each
frame into a binary image, a blob-tracker would thus have
to implement a dynamic thresholding scheme similar to
what is required for our tracker’s Search Mode. The
simplest approach involves computing a histogram for a
grayscale representation of the video frame, and choosing
the threshold to be at the local minimum between the two
peaks of the histogram. While this approach works well, it
is not as convenient as the automatic light and shadow
handling exhibited by a robust corner detector.

5 Conclusion

In this paper we described a robust solution for vision-
based augmented reality tracking that identifies and tracks,
in real-time, known planar patterns made up of corners.
The major advantages of tracking corners are their
detection robustness at a large range of distances, their
reliability under severe planar orientations, and their
tolerance of lighting changes or shadows. An overview of
the tracking system was described, and experiments
demonstrated the feasibility and reliability of the system
under various situations, most significantly under partial
pattern occlusion. Additionally, a comparison between
corner-based tracking and blob-based tracking was made.

References

[1] Thomas Auer, Axel Pinz. “The Integration of Optical and

Magnetic Tracking for Multi-User Augmented Reality”.
Computer & Graphics 23, 1999. pp 805-808.

[2] Azuma, R., Neumann, U., You, S. “Hybrid Inertial and
Vision Tracking for Augmented Reality Registration”.
1999

[3] A. Benedetti, P. Perona. “Real-time 2D Feature Detection
on a Reconfigurable Computer”. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
1998.

[4] Stefan Brantner, Thomas Auer, Axel Pinz. “Real-Time
Optical Edge and Corner Tracking at Subpixel Accuracy”.
Proceedings of 8th International Conference on Computer
Analysis of Images and Patterns CAIP ’99. Springer, F.
Solina, A. Leonardis (eds.), 1999. pp. 534-541.

[5] Mark Billinghurst, Hirokazu Kato, Ivan Poupyrev. “The
MagicBook: A Transitional AR Interface”. Computer &
Graphics. Issue 25, 2001. pp. 745-753.

[6] C. Harris, M. Stephens. “A Combined Corner and Edge
Detector”. In Alvey Vision Conf, 1998. pp. 147-151.

[7] Hirokazu Kato, Mark Billinghurst. “Marker Tracking and
HMD Calibration for a Video-based Augmented Reality
Conferencing System”. Proceedings of 2nd IEEE and
ACM International Workshop on Augmented Reality
IWAR ‘99, 1999. pp. 85 -94.

[8] Jose Molineros, Rajeev Sharma. “Real-Time Tracking of
Multiple Objects Using Fiducials for Augmented Reality”.
Real-Time Imaging 7, 2001. pp. 495-506.

[9] Ivan Poupyrev, Desney Tan, Mark Billinghurst, Hirokazu
Kato, Holger Regenbrecht, Nobuji Tetsutani.
“Developing a Generic Augmented-Reality Interface”.
IEEE Computer, March 2002. pp 44-50.

[10] Jun Rekimoto. “Matrix: A Realtime Object Identification
and Registration Method for Augmented Reality”.
Proceedings of Computer Human Interaction. 3rd Asia
Pacific. pp. 63-68.

[11] Gilles Simon, Andrew Fitzgibbon, Andrew Zisserman.
“Markerless Tracking using Planar Structures in the
Scene”. Proceedings. IEEE and ACM International
Symposium on Augmented Reality ISAR 2000, 2000. pp
120-128.

[12] A. State, G. Hirota, D. Chen, W. Garrett, M. Livingston.
“Superior Augmented Reality Registration by Integrating
Landmark Tracking and Magnetic Tracking”.
http://www.cs.unc.edu/~us/hybrid.html

[13] Emanuele Trucco, Alessandro Verri. Introductory
Techniques for 3D Computer Vision. Prentice-Hall, 1998.

[14] James R. Vallino. Interactive Augmented Reality. PhD
Thesis, University of Rochester, Rochester, NY.
November 1998.

[15] Andrew Zisserman. “Geometric Framework for Vision I:
Single View and Two-View Geometry”. Lecture Notes,
Robotics Research Group, University of Oxford.

A. Subpixel Corner Detection

The corner finder computes a corner strength value λ for
each pixel p in a search window, where λ represents the
smaller of the two eigenvalues for a neighbourhood of
pixels around p. Non-maximal suppression is used to
locate the strongest corner position s = (x, y) in this
neighbourhood, but a subpixel location can be computed
based on weighting the corner strengths of the 4-connected
neighbours

where λi represents the corner strength of pixel i in Figure
11.

)λλ2λ(2
)λλ(5.0_

asb

baxxsub
+−

−++=

)λλ2λ(2
)λλ(5.0_

csd

dcyysub
+−

−++=
Figure 11

