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ABSTRACT 
This paper presents the Visual Touchpad, a low-cost vision-based 
input device that allows for fluid two-handed interactions with 
desktop PCs, laptops, public kiosks, or large wall displays.  Two 
downward-pointing cameras are attached above a planar surface, 
and a stereo hand tracking system provides the 3D positions of a 
user’s fingertips on and above the plane.  Thus the planar surface 
can be used as a multi-point touch-sensitive device, but with the 
added ability to also detect hand gestures hovering above the 
surface.  Additionally, the hand tracker not only provides 
positional information for the fingertips but also finger 
orientations.  A variety of one and two-handed multi-finger 
gestural interaction techniques are then presented that exploit the 
affordances of the hand tracker.  Further, by segmenting the hand 
regions from the video images and then augmenting them 
transparently into a graphical interface, our system provides a 
compelling direct manipulation experience without the need for 
more expensive tabletop displays or touch-screens, and with 
significantly less self-occlusion. 

Categories and Subject Descriptors 
H.5.2 [User Interfaces]: Graphical user interfaces, Interaction 
styles.  I.4.m [Image Processing and Computer Vision]: 
Miscellaneous. 

General Terms 
Algorithms, Design, Human Factors. 

Keywords 
direct manipulation, gestures, perceptual user interface, hand 
tracking, fluid interaction, two hand, visual touchpad, virtual 
mouse, virtual keyboard, augmented reality, computer vision. 

1. INTRODUCTION 
Recently, a number of input devices have made it possible to 
directly manipulate user interface components using natural hand 
gestures, such as tabletop displays [2][14][15][23][24], large wall 
displays [6][10][16], and Tablet PCs equipped with touch sensors 
[25].  Users typically find that interacting with such devices is 

much more enjoyable and efficient than using a mouse and 
keyboard, largely due to the increased degrees of control as well 
as the comfort and intuitiveness of the input.  Additionally, the 
user interfaces for such devices typically allow a user to focus 
more on the task at hand, rather than diverting attention between 
different input devices and visual elements. 

 
Figure 1. Example configurations for the Visual Touchpad: (a) 

Desktop setup; (b) Laptop setup; (c) Hand-held setup. 
However, a major drawback with such touch sensitive input 
devices is the frequent occlusion of the display.  For example, 
many long-time stylus users that have become accustomed to 
using an external tablet surface find that using a Tablet PC (which 
requires a user to touch the stylus directly to the display) is 
actually more difficult due to their hand frequently occluding their 
work.  This becomes even more apparent with systems that 
recognize entire hand gestures directly over the display surface, 
such as tabletops and interactive walls.  Another shortcoming with 
standard touch sensitive devices is that they usually only 
recognize hand gestures on or close to the surface.  Rekimoto’s 
Smartskin technology [15] can detect hand proximity to some 
extent, but it is still difficult to determine specific feature points 
for gestures too far above the surface.  Finally, another problem 
with touch sensitive surfaces is the lack of robust finger 
orientation information, which is useful for certain types of 
operations.  In other words, while accurate position information 
can be determined for the tip of a finger touching the surface, it is 
very difficult to determine in which direction the finger is 
pointing without requiring the whole finger to be placed flat on 
the surface. 

In this paper, we explore the idea of using computer vision 
techniques to track a user’s bare, unmarked hands along a planar 
region that simulates a touch-sensitive surface.  By using stereo 
vision we can not only determine contact information, but also the 
distance of a fingertip from this Visual Touchpad surface for 
additional types of input.  We can also use vision techniques to 
extract finger orientation information for other more advanced 
interactions.  Finally, we can extract the hand regions from the 
video images in real-time, and then transparently augment them 
over top of the graphical interface as a visual proxy for the user’s 
actual hands.  This allows for the directness of tabletops and 
touch-screens, but with the added ability to still see items that are 
beneath the hand area.  One and two-handed gestures are then 
recognized over the touchpad in order to manipulate 2D graphical 
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elements in an intuitive and fluid manner.  Such a device allows 
for direct two-handed gestural interactions on desktop and laptop 
PCs, public kiosks, or large wall displays from afar. 

2. RELATED WORK 
Some of the earliest work demonstrating computer vision-based 
hand tracking for interaction without the use of gloves or markers 
was Krueger’s VIDEOPLACE [10], where silhouettes of hands 
could be used to generate 2D line drawings on large projection 
screens. 

Mysliwiec’s FingerMouse [13] demonstrated a single-camera 
vision system that could track a pointing finger above the 
keyboard, allowing mouse control without explicitly having to 
move the hand over to another device.  This increases the 
efficiency of tasks which require constant switching between 
mouse manipulations and text entry.  However, the system as 
presented only simulates a mouse with a single button.  

The Wearable Virtual Tablet [22] allows any planar rectangular 
object such as a magazine to be used as a touch-sensitive tablet 
via an infrared camera attached to a head-mount display.  The 
system can recognize single finger pointing gestures to simulate 
mouse cursor movement, while contact with the tablet surface is 
determined by analyzing the depth-dependent grayscale pixels 
around the fingertip area. 

The tabletop display community has also been using computer 
vision finger and hand tracking recently.  Wellner’s DigitalDesk 
[23] demonstrated a number of interesting single and multi-finger 
interaction techniques in order to integrate real and virtual data, 
using microphones to capture “tapping” sounds for selection 
operations.  Similarly, the EnhancedDesk project [2] [14] uses 
infrared cameras to detect the 2D positions of all the fingertips of 
each hand for such tasks as two-handed drawing and GUI 
navigation, but their single camera setup cannot determine 
whether a finger is touching the table surface.  Corso et al. [3] 
presented the 4D Touchpad, a bottom-projected tabletop system 
that uses a stereo camera setup to extract the 3D position of 
fingers above the table surface.  Rather than tracking hands 
globally in each video image, they instead passively monitor 
regions of interest in the image for sequences of “visual 
interaction cues”.  For example, a region representing a 
pushbutton would watch for cues such as motion, skin color 
blobs, and finger shape.  While their system has significant 
potential in terms of rich interactions, they only demonstrate a 
simple button press detector by implementing a virtual piano that 
allows a user to simulate pressing and releasing piano keys.  
Finally, MacCormick and Isard [12] presented a vision-based 
hand tracker using a particle-filtering approach that provides 2D 
position and orientation information for the thumb and index 
finger.  They demonstrate the speed and robustness of their system 
by implementing a 2D drawing application.  

The tabletop community has also investigated non-vision based 
solutions by using special touch-sensitive hardware.  For example, 
Wu and Balakrishnan [24] present a room planning system using 
a touch sensitive tabletop that can detect multiple points of input 
from multiple users.  Similarly, Rekimoto’s SmartSkin [15] 
allows the detection of multiple contact points for tabletop 
displays, allowing full hand gestures to be recognized. 

Yee [25] describes a modification for Tablet PCs that allows two-
handed interaction.  Using a touch-sensitive overlay, the Tablet 
PC can detect single finger contact information in addition to the 

Tablet PC’s original stylus device.  A number of interesting 
asymmetric two-handed tasks are described in order to leverage 
this additional mode of input. 

A number of researchers investigating interaction techniques for 
large wall displays have also considered using hands directly as 
input.  For example, the system by Hardenberg [6] detects and 
tracks unmarked hands using computer vision techniques in order 
to select and move objects in 2D.  In essence, the system allows a 
pointing finger to control 2D mouse cursor movement, with a 
single second delay to simulate button clicks.  Similarly, the 
BareHands system [16] describes a method to interact with a large 
touch screen by mapping various hand postures to commands 
such as copy and paste, thereby saving the user from having to 
select these operations from a menu.   

In most of the above mentioned systems that use back-projected 
displays [16] [25], the main drawback is the frequent occlusion of 
the screen area by the hands.  As a result, a user frequently tries to 
peer around the occluding hand or moves it away from screen, 
thereby disrupting the focus of attention.  Clever placement of 
widgets and menus can remedy the situation somewhat [24], but 
at the expense of lost screen real estate or more complicated menu 
layouts. 

Our work largely builds upon the Visual Panel system described 
by Zhang et al. in [26].  In their system they track a quadrangle 
shaped piece of paper using single-view computer vision 
techniques, then extract the position of a fingertip over the panel 
in order to position the mouse cursor in a Windows desktop.  
Since the panel is not equipped with any buttons or touch sensors, 
mouse clicks are simulated by holding the fingertip position 
steady for one second.  Text entry is achieved by way of a virtual 
on-screen keyboard.  Due to the one second delay, text entry and 
interface navigation can be quite slow.  Additionally, the single 
fingertip detector only allows for two degrees of freedom, thereby 
limiting the input to single cursor mouse control.  However, by 
extracting the X and Y orientation of the actual panel from some 
base pose, they are able to simulate a joystick which is useful for 
another two degrees of freedom. 

Using the Visual Panel as a starting point, we present a variety of 
new interaction techniques that are possible when we combine it 
with stereo cameras and a more sophisticated gesture recognition 
system that can detect more than a single hand or finger as well as 
fingertip contact with the panel surface.  Also, by augmenting the 
live images of a user’s actual hands directly into the graphical 
interface, our Visual Touchpad begins to provide a more 
compelling “hands-on” experience similar to tabletops or touch-
screens while the use of transparency during augmentation avoids 
the occlusion problems associated with other hand-based 
interaction schemes such as tabletops or Tablet PCs.  Figure 1 
shows some example configurations of our system. 

Various researchers have recognized the value in augmenting 
displays with overlaid live video proxies of the body for 
compelling visual feedback.  Tang's Videowhiteboard [20] and 
Ishii & Kobayashi's ClearBoard [7] display overlaid video of a 
collaborator working on a shared planar workspace.  Buxton [1] 
presents a good discussion of these and related earlier work, 
which lies primarily in the area of shared workspaces and 
collaboration.  Roussel's VideoPointer [17] proposes the overlay 
of a user's hand as an expressive remote pointing device.   In their 
Video FaceTop [19], Stotts, Smith & Jen overlay the desktop with 
a live video reflection of the user, which can be used to 
manipulate onscreen widgets. 



With the exception of the latter, these works use overlaid live 
video primarily for remote awareness in applications such as 
teleconferencing, and do not make use of the video proxy as an 
active user input.  In contrast, we make use of the self-image both 
to provide visual feedback without occlusion, and as a direct user 
input mechanism in a similar spirit to that of [19]. 

3. SYSTEM OVERVIEW 
3.1 Hardware 
Similar to the Visual Panel [26], the Visual Touchpad is a simple 
quadrangle panel such as a piece of paper with a rigid backing, 
over which hand gestures can be recognized for interaction 
purposes.  In our system, we use a piece of paper with a large 
black rectangle in the centre, surrounded by a thin white border.  
This black region defines the active “touchpad”, while the white 
border facilitates the vision algorithms described later.  The size 
of the paper can be any size as long as we can place both hands 
comfortably over the touchpad.  Additionally, the touchpad 
should ideally have the same aspect ratio as the display that will 
be used for visualization.  Section 3.4 discusses this in more 
detail. 

Two off-the-shelf web cameras are then placed in a convenient 
location such that the black rectangular region of the touchpad is 
fully visible to both cameras, and the cameras are placed with a 
sufficiently wide baseline for accurate depth estimation.  The 
cameras can capture 320x240 images at 30 frames per second on a 
standard Pentium 4 PC.  For desktops, laptops, and kiosk 
configurations, it is sufficient to fix the location of the touchpad 
in front of the display, and then place the cameras on top of the 
display facing downward (Figure 1a and Figure 1b).  For 
interacting with large wall displays from afar, we propose 
attaching the cameras directly to the panel (Figure 1c) and using 
the panel as a handheld input device, instead of hanging the 
cameras from the ceiling as in the original Visual Panel work.  
The advantage with our fixed panel approach is that the system is 
easier to set up, and the pattern will always be visible to the 
cameras.  The disadvantage is that we lose the ability to extract 
the panel orientation, but we make up for these lost degrees of 
freedom with a more sophisticated hand gesture recognition 
system. 

3.2 Homography Computation 
To simulate a touch-sensitive surface, we assume that the corners 
of the touchpad map to the corners of the display (Figure 2).  In 
order to determine this mapping, we use a homography [4], which 
defines a plane-projective mapping between two planes.  In order 
to compute a homography we require the positions of at least four 
points on one plane and the corresponding four points on the 
other plane.  

 
Figure 2. Touchpad to screen mapping. 

Therefore, for each of our cameras, we detect the four corners of 
the touchpad in a captured video frame and then compute  
Hi є {1,2}, which represents the homography that maps camera i’s 
view of the touchpad into display coordinates.  

To find the corners of the touchpad in a frame of video, we use 
simple binary image processing operations.  First we threshold a 
grayscale version of the video frame into a binary image in order 
to segment out the high contrast black rectangle that is surrounded 
by the thin white border (Figures 3a and 3b).  We currently use a 
fixed value of 128 for our 8-bit grayscale image threshold, which 
works well in most situations.  A flood-fill technique is then used 
to extract the largest black connected component in the video 
frame, and for this black blob we extract the four strongest corner 
features (Figure 3c).  A homography is then computed using these 
four touchpad corners and the corresponding corners of the 
display.  The assumption here is that the Visual Touchpad fills 
most of the image such that the largest black blob region will 
correspond to the black rectangular region of the touchpad.   

 
Figure 3. Touchpad detection: (a) Original frame; (b) 

Thresholded binary image; (c) Corners detected. 

3.3 Hand Tracking 
In this section we describe the details of the hand tracker, which 
applies low-level image processing operations to each frame of 
video in order to detect the locations of the fingertips.  While a 
model-based approach that uses temporal information could 
provide more robustness to situations such as complex 
backgrounds or overlapping hands, the image processing 
approach is straightforward to implement and can run in real-time 
with low cost PCs and cameras. 

3.3.1 Image Rectification 
Using Hi defining the mapping from the touchpad in camera i to 
screen space, our hand tracker first warps each frame of live video 
so that the panel (and any hand over top of it) is in screen space.  
Let pj represent a pixel in screen space, and qj represent the 
corresponding pixel from touchpad space.  Therefore we have 

jij pHq �� 1−=  (1) 

Figure 4a and 4b show the result of creating a warped (screen 
space) image of the touchpad with a hand over top of it 

3.3.2 Background Subtraction 
Since we assume a black rectangular region for our panel, it is 
easy to segment out the hand from the warped image by using a 
simple background subtraction operation, where our background 
is simply a black rectangle covering the whole screen (Figure 4c).  
By using a black region as our known background, the system is 
quite robust to shadows cast onto the touchpad by foreground 
objects such as hands.  Additionally, the system can reliably 
detect foreground objects in a wide variety of lighting conditions 
as long as they are different from the black background.   

(a) (b) (c) 



3.3.3 Hand Blob Detection 
A flood-fill technique is then applied to the foreground objects, 
and the two largest connected blobs above some threshold size are 
assumed to be the hand blobs.  Assuming that hands will not cross 
over during interaction, we simply label the left-most blob as the 
left hand, and the right-most blob as the right hand.  In the case of 
only a single blob, we consider it to be either the left or right hand 
depending on a software setting that defines a user’s dominant 
hand preference.   

3.3.4 Fingertip Detection 
The contours of each blob are then detected in a clockwise order 
and potential fingertips are found by finding strong peaks along 
the blob perimeters.  We first use an approach similar to [18], 
where the vectors from a contour point k to k+n and k-n are 
computed (for some fixed n).  If the angle between these vectors is 
below some threshold (we currently use 30 degrees) then we mark 
that contour point as a potential fingertip.  To avoid detecting 
valleys (such as between fingers) we verify that the determinant of 
the 2x2 matrix consisting of the two vectors is negative.  Non-
maximal suppression is then used to avoid detecting strong 
fingertips too close to one another.  Finally, orientation is 
determined by computing a line from the midpoint between 
contour points k+n and k-n to the fingertip point k.  Figure 4d 
shows the result of fingertip position and orientation detection. 

 
Figure 4. Hand detection in the warped image: (a) Original 

image; (b) Warped image; (c) After background subtraction; 
(d) Finger tip positions and orientations detected. 

3.3.5 Fingertip Labeling 
If a single fingertip is detected in the contour, it is always labeled 
as the index finger.  If two fingers are detected, the system 
assumes they are the thumb and index finger, using the distance 
between each fingertip along the contour to differentiate between 
the two.  For example, for the right hand, the distance from the 
index finger to the thumb is larger in the clockwise contour 
direction than the distance from the thumb to index finger.  For 
three, four, and five finger arrangements we use a similar contour-
distance heuristic for the labeling, with label priority in the 
following order: index finger, thumb, middle finger, ring finger, 
little finger.   

3.3.6 Detecting Contact with the Visual Touchpad 
For each camera, the hand detector gives us the (x,y) position of 
fingertips in screen space, as well as the orientation angle Θ of the 
finger.  For fingertips directly on the surface of the touchpad, the 
positions will be the same regardless of whether we use the pose 
information from the warped image from camera 1 or the warped 
image from camera 2.  However, for fingertips above the touchpad 
surface the positions of corresponding points will be different 

since the homography only provides a planar mapping (Figure 5).  
This disparity of corresponding points can thus be used to 
determine the distance of feature points above the touchpad 
surface [21].  To determine a binary touch state, we define a 
disparity threshold below which we consider a point to be in 
contact with the touchpad.  For a given camera configuration, a 
threshold can be easily determined by holding the finger at a 
height above the touchpad which should be considered “off” the 
surface.  The disparity of the fingertip position can then be used as 
the disparity threshold.  In our experiments we have found that 
holding the finger approximately 1cm above the surface works 
well.  The final output from our hand tracker is a set of (x,y,z,Θ) 
values for each detected fingertip, where z is a boolean value 
representing whether the finger is touching the surface.  Note that 
we set one of our cameras to be the reference camera, and thus the 
(x,y) values for each fingertip are extracted from the hand contour 
associated with that camera.  Additionally, the tracker can also 
provide temporal information, resulting in five parameters for 
each fingertip.  The advantage of using disparity instead of 3D 
triangulation is that we do not need to perform camera calibration 
of any sort, which makes the system extremely simple to set up. 

 
Figure 5. Using disparity for sensing height of raised fingers: 

(left) Rectified camera 1 view; (middle) Rectified camera 2 
view; (right) Images overlaid together show corresponding 

points for raised fingers are not in same position. 

3.3.7 Postures and Gestures 
Given the output of the hand tracker, it is extremely simple to 
detect the four static postures depicted in Figure 6.  The pointing 
posture is simply the index finger held straight out in some 
direction.  The pinching posture involves setting the thumb and 
index finger as if something is being held between them, with the 
thumb and index finger pointing in relatively the same direction.  
The L-posture is a variation of the pinching posture, where the 
thumb and index finger are pointing in approximately orthogonal 
directions.  For both the pinch posture and L-posture we can 
overload the recognition system with variations such as both 
fingers touching the touchpad surface, both fingers not touching 
the surface, or one finger on the surface and one finger off the 
surface.  Finally the five-finger posture is simply holding out all 
fingers so that the hand detector can clearly identify all fingertips. 

 
Figure 6. Posture set: (a) Pointing; (b) Pinching; (c) L-posture; 

(d) Five-finger posture. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 



Along with the static postures, our system can also detect gestures 
using temporal information.  To demonstrate this capability, we 
currently detect a holding gesture (for all postures), a double-tap 
gesture (for the pointing posture), and an X shape gesture (also 
for the pointing posture). While these gestures are fairly simple 
there is nothing preventing our system from recognizing more 
complicated gestures, since all of the required information is 
available.  

3.4 Hand Augmentation 
The ability to use your hand for direct manipulations is one of the 
main advantages of devices such as tabletop displays or touch-
screens.  Roussel’s VideoPointer system [17] proposed using a 
live video stream of a user’s hand as a better telepointer for real-
time groupware.  Building on this idea, we propose augmenting 
the user’s hand directly into the graphical interface, using the live 
video of the segmented hand region from the reference camera as 
a visual proxy for direct manipulations.  The advantage of this 
approach is that a user feels more connected to the interface in a 
manner similar to tabletops or touch-screens, but while using an 
external display such as a monitor.  The other advantage is that by 
rendering the hand as an image, we can apply other special effects 
such as transparency to help overcome the occlusion problem, as 
well as visual annotations onto the hand such as mode or state 
information.  Figure 7 shows an example of a hand being 
augmented onto a graphical interface. 

 
  Figure 7. Hand augmentation: (a) No fingers; (b) Finger 

above surface; (c) Finger contacting touchpad. 

Note that the size of the hand on the screen is dependent upon the 
size of the touchpad, due to the touchpad-screen homography; the 
larger the touchpad, the smaller the hand appears on the screen, 
and vice-versa.  Thus the size of the panel should be proportional 
to the size of the display.  As mentioned earlier, it is also best to 
have similar aspect ratios for the display and the touchpad so that 
the hand is rendered realistically. 

When no fingers are detected by the hand tracker, any hand blobs 
are rendered with 50% opacity (Figure 7a).  As soon as any 
fingers are detected, each fingertip is drawn at 85% opacity with 
gradual falloff to 50% opacity using a fixed falloff radius (Figure 
7b).  This allows the hand to come into focus when the user is 
performing some action.  Additionally, when a fingertip is 
determined to be in contact with the touchpad, a yellow highlight 
is rendered beneath it for visual touch feedback (Figure 7c).  

4. INTERACTION TECHNIQUES 
To demonstrate the capabilities of the Visual Touchpad, a simple 
picture manipulation application has been implemented.  A 
number of images are scattered around a canvas, and using hand 
gestures the user is able to move/rotate/scale the images, query 
object properties, pan/rotate/zoom the view, etc.  Using some of 
the postures and gestures described earlier we show that the 
Visual Touchpad can be used to perform a variety of common 
GUI operations in a fluid manner. 

4.1 One-handed Techniques 
4.1.1 Object Selection/Translating/Rotating/Query 
To select an image on the canvas, a single hand in a pointing 
posture can be positioned so that the fingertip is within the 
bounds of the object, with the fingertip touching the surface of the 
Visual Touchpad.  When the finger makes contact with the 
touchpad a yellow glow appears around the fingertip.  
Additionally, the borders of the selected image become green to 
signify that it has been selected.  To deselect the object, the user 
simply raises the fingertip up from the touchpad surface until the 
yellow glow disappears. 

Once an object has been selected, it can be simultaneously 
translated and rotated.  Translation is controlled by simply 
moving the finger in the appropriate direction.  The image then 
remains attached to the fingertip.  Similarly, the orientation of the 
finger controls the rotation of the object, with the centre of 
rotation being the fingertip position.  Figure 8 shows an image 
being translated and rotated using the pointing gesture. 

To query an object for information (such as file name, image 
dimensions, etc) we use an approach similar to tooltips found in 
graphical interfaces such as Windows.  By simply holding a 
pointing posture for one second inside the boundaries of an 
image, but without touching the touchpad surface, a small query 
box is activated.  Moving the finger out of the image dismisses the 
query box. 

 
Figure 8. Image translation and rotation. 

4.1.2 Group Selection/Copy/Paste/Delete 
To select a group of images for operations such as copying or 
deleting we can make use of the double-tap gesture.  By double-
tapping on an image a yellow highlight appears around it 
signifying that it has been added to the current group.  To remove 
a selected image from the group we simply double-tap it again.  A 
single tap in any empty canvas location causes the entire group of 
objects to be deselected.  

The selected group is always the set of objects in the clipboard so 
there is no need to explicitly perform a copy operation.  To paste 
the selected group of images we use the L-posture with both 
fingers above the touchpad surface.  The index finger position 
defines the centre of the selected group, and translation or rotation 
of the L-posture can be used to place the group in the desired 
location.  To finalize the positioning the user simply places both 
the index finger and thumb onto the touchpad surface.  After the 
paste operation, the new set of images becomes the active group 
selection.  Note that the second hand can be used to navigate the 
canvas viewpoint simultaneously (as described in the next 
section).  To cancel the paste operation the user can touch the 
thumb and index finger together without touching the touchpad 
surface.  To delete a selected group of images a user draws an X 
in an empty part of the canvas.  

(a) (b) (c) 



4.1.3 Canvas Panning/Rotating/Zooming 
To control the canvas viewpoint we use an approach similar to the 
SmartSkin map viewer [15].  Using a pinching posture, where the 
thumb and index finger are in contact with the surface of the 
touchpad, the user can simultaneously control the position, 
orientation, and zoom level of the window into the canvas.  The 
idea is that as soon as two fingers make contact with the touchpad, 
they become “attached” to the corresponding positions within the 
canvas.  Moving the hand around the canvas while maintaining 
the pinch posture causes the window into the canvas to move in a 
similar direction.  To rotate the entire canvas, the hand can be 
rotated while the pinch posture is maintained.  The centre of 
rotation is thus defined as the midpoint between the tips of the 
thumb and index finger.  Finally, bringing the fingers closer 
together while still touching the surface causes the view to be 
zoomed out, while moving the fingers further apart causes the 
view to be zoomed in.  The centre of zoom is defined as the 
midpoint between the thumb and index finger.  In all cases, when 
translation, rotation or zooming becomes difficult due to the hand 
ending up in an awkward pose, the operation can be continued by 
simply raising the fingers off the touchpad surface, adjusting the 
hand to a comfortable position again, and then continuing the 
viewpoint control.  Figure 9 shows an example of a pinch posture 
controlling the zoom level. 

 

 
Figure 9. Canvas zoom control. 

4.1.4 Navigation Widget 
While the canvas viewpoint control described above works well 
for small adjustments of the canvas, it is inefficient when large-
scale viewpoint changes are required.  Since we are able to 
recognize postures and gestures above the touchpad surface, we 
propose a navigation widget that can be used for continuous 
scrolling of the viewpoint.  To activate the widget the user holds a 
pinch posture steady for one whole second above the surface of 
the touchpad.  Once activated, the system captures the midpoint 
between the thumb and index finger as the “centre” position.  A 
navigation arrow then appears between the thumb and index 
finger, with a line connecting the current midpoint between the 
thumb and index finger to the “centre” position (Figure 10).   

The widget then acts much like a joystick, where translation in 
any direction away from the “centre” causes the viewpoint to 
translate in that direction, with scrolling speed dependent upon 
the distance of the widget from the “centre”.  Canvas zooming can 
also be performed, by treating the navigation widget as a dial, 
where the “zero” rotation is the finger orientation at the “centre” 
pose.  Therefore, rotation of the fingers in a clockwise direction 
causes the view to be zoomed in, while a counter-clockwise 
rotation causes the view to be zoomed out.  The amount of 
rotation from the “zero” defines the speed of the zoom.  To 

deactivate the widget, the user can simply pinch the fingers 
together completely. 

 

 
Figure 10. Navigation widget. 

4.2 Two-handed Techniques 
4.2.1 Pie Menu 
Asymmetric-dependent tasks, as proposed by Guiard [5], are those 
in which the dominant (D) hand moves within a frame of 
reference that has been set by the non-dominant (ND) hand.   
Therefore, the ND hand will engage in coarse and less frequent 
actions, while the D hand will be used for faster, more frequent 
actions that require more precision.  Kabbash [8] showed that 
such asymmetric-dependent interaction techniques, where the 
action of the D hand depends on that of the ND hand, give rise to 
the best performance since they most closely resemble the 
bimanual tasks that we perform in everyday life. 

We follow such an asymmetric-dependent approach for our pie 
menu system that is used to select various options.  To activate the 
pie menu the user performs a double-tap gesture using the ND 
hand.  The pie menu (with a small hollow centre) is then 
displayed, centered at the ND hand’s index finger.  If the user 
maintains contact with the touchpad surface, the pie menu will 
remain centered at the index finger.  If the index finger is raised 
from the surface, the pie menu will remain at the previous 
position, thereby allowing the user to select menu options with a 
single-tap.  Another double-tap in the hollow centre is used to 
deactivate the pie menu.  To illustrate the functionality of the pie 
menu, we implemented a simple drawing tool that allows the user 
to “finger-paint” onto the canvas.  The pie menu consists of the 
following options: drawing mode, draw color, draw size, draw 
shape. 

The drawing mode option acts as a toggle switch.  When selected, 
the D hand’s fingertip becomes a paintbrush, with an appropriate 
cursor drawn at its tip.  The user can then paint strokes with the D 
finger when it is in contact with the touchpad surface.   

By selecting the draw color option, a color palette is presented to 
the user.  Moving the ND fingertip within the palette (while 
making contact with the touchpad surface) sets the color of the D 
hand’s fingertip. To deactivate the color palette the user simply 
moves the ND fingertip out of the palette area. 

The draw size menu option allows the size of the paintbrush tip to 
be modified.  A slider appears when the option is selected, which 

Zooming in Zooming out 

Translation Zooming 



can be modified by “dragging” the slider handle using the ND 
finger much like many 2D GUIs.  The slider is deactivated by 
moving the ND finger outside of the slider’s rectangular border.  

Finally, the draw shape menu option allows the user to change the 
shape of the paintbrush tip.  Four simple shapes are currently 
implemented as shown in Figure 11.  Unlike traditional painting 
tools, ours allows for simultaneous control of not only the brush 
tip’s position but also the tip orientation, thereby allowing for 
interesting calligraphic effects.  

 
Figure 11. Pie menu for finger-painting. 

4.2.2 Image Stretchies 
Kurtenbach et al [11] introduced an interaction technique called 
“two handed stretchies” that allow primitive shapes to be 
simultaneously translated, rotated and scaled using two rotation-
sensitive pucks on a tablet surface.  The Visual Touchpad is also 
capable of such techniques using two-handed postures instead of 
pucks. 

One hand with a pointing posture selects an object as usual.  The 
position of the fingertip is then “locked” onto the selected image.  
The second hand then selects another position within the same 
image, and that position becomes “locked”.  Translating both 
fingers at the same rate and in the same direction allows for the 
image to be moved.  However, translating the fingers in different 
directions or at different speeds will cause rotation and scale 
changes.  The idea is that the two “locked” finger positions will 
always represent the same pixel in the image.  While we currently 
do not use the finger orientations for this stretch operation, we 
plan to integrate it into the system in the future to allow for a 
simultaneous image warp as well. 

4.2.3 Two-handed Virtual Keyboard 
Many applications such as presentation tools, drawing tools, or 
web browsers require frequent switching between text entry 
(keyboard) and navigation (mouse).  Virtual keyboards [9] are one 
approach to making text entry and navigation more fluid.  By 
rendering a graphical layout of a keyboard on the screen, a user 
does not have to switch between input devices and can instead 
focus more on the desired task.  Additionally, virtual keyboards 
can be reconfigured to different layouts based on a user’s personal 
preferences.  The downfall with most virtual keyboards is that 
they rely on single mouse clicks to simulate key presses, resulting 
in slow text entry.   

Motivated by the familiarity and reconfigurability of virtual 
keyboards, we have implemented an onscreen QWERTY keyboard 
for the Visual Touchpad that can be used to make textual 
annotations on our image canvas.  To activate the virtual 
keyboard, a user makes a five-finger gesture with both hands over 
the touchpad (Figure 12).  This gesture simulates putting the 
hands onto “home-row” on a real keyboard.  The virtual keyboard 

is then rendered transparently on the screen, with the hands 
rendered over top.  By default, the text entry cursor is placed at 
the canvas location corresponding to the middle of the screen, 
above the virtual keyboard.  Letters can then be entered by simply 
touching the appropriate virtual keys with the fingertips.  The 
virtual keyboard is deactivated by pressing the virtual “Escape” 
key.  Note that the mapping between the touchpad and the virtual 
keyboard is not dependent on the canvas window settings.  
Instead, the size and position of the virtual keyboard is fixed to 
some predetermined absolute region of the touchpad and a 
corresponding region of the screen so that the spatial layout of the 
keys remains constant. 

By rendering the hands and keyboard together on the display, 
users do not have to divert their visual attention away from the 
onscreen task.  Additionally, by using the same input surface for 
both text-entry and GUI navigation, the experience is much more 
fluid compared to traditional keyboard-mouse configurations.  It 
is worth mentioning, however, that the current implementation 
does not allow for extremely fast text entry, largely due to the 
limited speed of our camera capture and image processing 
operations. 

 
Figure 12. Virtual keyboard. 

5. DISCUSSION 
While detailed user experiments have not yet been performed, 
informal user feedback from students in our research lab has been 
very positive.  Each user was given a brief introduction to the 
posture and gesture set, and then they were free to explore the 
system on their own for 10 to 15 minutes. 
All users found the posture and gesture based manipulations to be 
extremely intuitive, with descriptions such as “cool”, “neat”, and 
“fun” to describe the overall system.  One of the first things many 
people were impressed with was the ability to see their own hands 
on the screen, and as a result they found the direct manipulation 
techniques to be very compelling.   
The asymmetric two-handed pie menu required a quick 
introduction in most cases, but afterwards all users found the pie 
menu to be easy to use.  Although our pie menu only has four 
options on it, we tried a quick experiment to see if hand 
transparency makes any difference when portions of the menu end 
up beneath the hand.  Some users were given a version with a 
fully opaque hand, while others were given a transparent hand.  It 
was observed that a few of the opaque hand users would 
frequently move their hand off to the side of the pie menu if an 
option’s title was occluded by the hand, while we did not see this 
with the transparent hand users.  A more extensive study is 
required to accurately determine how effective our transparent 
hands are against occlusion, but these preliminary observations 
are encouraging. 



While many users liked the idea of fluidly switching between 
navigation and text-entry modes, most felt that the virtual 
keyboard has some drawbacks.  Most notably, it was felt that the 
lack of tactile feedback during keypresses made text entry 
awkward and prone to errors, since it was difficult to determine 
key boundaries.  One user suggested using some more cues to 
signify which key was about to be pressed, such as highlighting 
the most likely key based on the trajectory of the fingertip, or 
generating audible key clicking sounds.  Another complaint with 
the virtual keyboard was that it occupied a significant amount of 
screen real estate.  An interesting suggestion was to gradually 
increase or decrease the transparency of the virtual keyboard 
based on a user’s typing speed or idle time, under the assumption 
that a fast typist has memorized the spatial arrangement of the 
keys and does not need to see the keyboard as much. 
In terms of system limitations, there are a few things worth 
mentioning.  Since the cameras are assumed to be above the 
touchpad surface facing downward, gestures that require fingers 
to point straight down cannot be recognized by the hand tracker.  
While such gestures are simple to detect on devices such as 
SmartSkin [15], the vision system still affords other features such 
as multi-layer gesture recognition and accurate finger orientations.  
We are currently attempting to combine an actual touch sensitive 
surface (a Mitsubishi DiamondTouch) with our Visual Touchpad 
to leverage the benefits of both devices, and preliminary 
observations are promising.  
For large wall displays we mentioned that a hand-held Visual 
Touchpad would be appropriate when a direct manipulation 
interface is desired.  Our current two-handed interaction 
techniques do not work well for such a setup since the ND hand is 
required to hold the actual touchpad.  Instead, for such large wall 
interaction it would be more appropriate to investigate two-
handed techniques that allow the ND hand’s four fingers to hold 
the panel from behind while the thumb rests on the touchpad 
surface from the front.  The thumb could then be “twiddled” much 
like a gamepad on a video game console, but in an asymmetric-
dependent manner with the D hand. 

6. CONCLUSION 
In this paper we presented the Visual Touchpad, a low-cost 
vision-based input device that allows for fluid two-handed 
gestural interactions much like those available on more expensive 
tabletop displays or touch-screens.  While we demonstrated the 
capabilities of the Visual Touchpad in a simple image 
manipulation application, there are still many possibilities for new 
two-handed interaction techniques that further exploit the 
strengths of the system.  
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