
Visual Touchpad: A Two-handed Gestural Input Device
Shahzad Malik, Joe Laszlo
Department of Computer Science

University of Toronto
smalik | jflaszlo @ dgp.toronto.edu

http://www.dgp.toronto.edu

ABSTRACT
This paper presents the Visual Touchpad, a low-cost vision-based
input device that allows for fluid two-handed interactions with
desktop PCs, laptops, public kiosks, or large wall displays. Two
downward-pointing cameras are attached above a planar surface,
and a stereo hand tracking system provides the 3D positions of a
user’s fingertips on and above the plane. Thus the planar surface
can be used as a multi-point touch-sensitive device, but with the
added ability to also detect hand gestures hovering above the
surface. Additionally, the hand tracker not only provides
positional information for the fingertips but also finger
orientations. A variety of one and two-handed multi-finger
gestural interaction techniques are then presented that exploit the
affordances of the hand tracker. Further, by segmenting the hand
regions from the video images and then augmenting them
transparently into a graphical interface, our system provides a
compelling direct manipulation experience without the need for
more expensive tabletop displays or touch-screens, and with
significantly less self-occlusion.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interfaces, Interaction
styles. I.4.m [Image Processing and Computer Vision]:
Miscellaneous.

General Terms
Algorithms, Design, Human Factors.

Keywords
direct manipulation, gestures, perceptual user interface, hand
tracking, fluid interaction, two hand, visual touchpad, virtual
mouse, virtual keyboard, augmented reality, computer vision.

1. INTRODUCTION
Recently, a number of input devices have made it possible to
directly manipulate user interface components using natural hand
gestures, such as tabletop displays [2][14][15][23][24], large wall
displays [6][10][16], and Tablet PCs equipped with touch sensors
[25]. Users typically find that interacting with such devices is

much more enjoyable and efficient than using a mouse and
keyboard, largely due to the increased degrees of control as well
as the comfort and intuitiveness of the input. Additionally, the
user interfaces for such devices typically allow a user to focus
more on the task at hand, rather than diverting attention between
different input devices and visual elements.

Figure 1. Example configurations for the Visual Touchpad: (a)

Desktop setup; (b) Laptop setup; (c) Hand-held setup.
However, a major drawback with such touch sensitive input
devices is the frequent occlusion of the display. For example,
many long-time stylus users that have become accustomed to
using an external tablet surface find that using a Tablet PC (which
requires a user to touch the stylus directly to the display) is
actually more difficult due to their hand frequently occluding their
work. This becomes even more apparent with systems that
recognize entire hand gestures directly over the display surface,
such as tabletops and interactive walls. Another shortcoming with
standard touch sensitive devices is that they usually only
recognize hand gestures on or close to the surface. Rekimoto’s
Smartskin technology [15] can detect hand proximity to some
extent, but it is still difficult to determine specific feature points
for gestures too far above the surface. Finally, another problem
with touch sensitive surfaces is the lack of robust finger
orientation information, which is useful for certain types of
operations. In other words, while accurate position information
can be determined for the tip of a finger touching the surface, it is
very difficult to determine in which direction the finger is
pointing without requiring the whole finger to be placed flat on
the surface.

In this paper, we explore the idea of using computer vision
techniques to track a user’s bare, unmarked hands along a planar
region that simulates a touch-sensitive surface. By using stereo
vision we can not only determine contact information, but also the
distance of a fingertip from this Visual Touchpad surface for
additional types of input. We can also use vision techniques to
extract finger orientation information for other more advanced
interactions. Finally, we can extract the hand regions from the
video images in real-time, and then transparently augment them
over top of the graphical interface as a visual proxy for the user’s
actual hands. This allows for the directness of tabletops and
touch-screens, but with the added ability to still see items that are
beneath the hand area. One and two-handed gestures are then
recognized over the touchpad in order to manipulate 2D graphical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’04, October 13–15, 2004, State College, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-890-3/04/0010…$5.00.

(a) (b) (c)

elements in an intuitive and fluid manner. Such a device allows
for direct two-handed gestural interactions on desktop and laptop
PCs, public kiosks, or large wall displays from afar.

2. RELATED WORK
Some of the earliest work demonstrating computer vision-based
hand tracking for interaction without the use of gloves or markers
was Krueger’s VIDEOPLACE [10], where silhouettes of hands
could be used to generate 2D line drawings on large projection
screens.

Mysliwiec’s FingerMouse [13] demonstrated a single-camera
vision system that could track a pointing finger above the
keyboard, allowing mouse control without explicitly having to
move the hand over to another device. This increases the
efficiency of tasks which require constant switching between
mouse manipulations and text entry. However, the system as
presented only simulates a mouse with a single button.

The Wearable Virtual Tablet [22] allows any planar rectangular
object such as a magazine to be used as a touch-sensitive tablet
via an infrared camera attached to a head-mount display. The
system can recognize single finger pointing gestures to simulate
mouse cursor movement, while contact with the tablet surface is
determined by analyzing the depth-dependent grayscale pixels
around the fingertip area.

The tabletop display community has also been using computer
vision finger and hand tracking recently. Wellner’s DigitalDesk
[23] demonstrated a number of interesting single and multi-finger
interaction techniques in order to integrate real and virtual data,
using microphones to capture “tapping” sounds for selection
operations. Similarly, the EnhancedDesk project [2] [14] uses
infrared cameras to detect the 2D positions of all the fingertips of
each hand for such tasks as two-handed drawing and GUI
navigation, but their single camera setup cannot determine
whether a finger is touching the table surface. Corso et al. [3]
presented the 4D Touchpad, a bottom-projected tabletop system
that uses a stereo camera setup to extract the 3D position of
fingers above the table surface. Rather than tracking hands
globally in each video image, they instead passively monitor
regions of interest in the image for sequences of “visual
interaction cues”. For example, a region representing a
pushbutton would watch for cues such as motion, skin color
blobs, and finger shape. While their system has significant
potential in terms of rich interactions, they only demonstrate a
simple button press detector by implementing a virtual piano that
allows a user to simulate pressing and releasing piano keys.
Finally, MacCormick and Isard [12] presented a vision-based
hand tracker using a particle-filtering approach that provides 2D
position and orientation information for the thumb and index
finger. They demonstrate the speed and robustness of their system
by implementing a 2D drawing application.

The tabletop community has also investigated non-vision based
solutions by using special touch-sensitive hardware. For example,
Wu and Balakrishnan [24] present a room planning system using
a touch sensitive tabletop that can detect multiple points of input
from multiple users. Similarly, Rekimoto’s SmartSkin [15]
allows the detection of multiple contact points for tabletop
displays, allowing full hand gestures to be recognized.

Yee [25] describes a modification for Tablet PCs that allows two-
handed interaction. Using a touch-sensitive overlay, the Tablet
PC can detect single finger contact information in addition to the

Tablet PC’s original stylus device. A number of interesting
asymmetric two-handed tasks are described in order to leverage
this additional mode of input.

A number of researchers investigating interaction techniques for
large wall displays have also considered using hands directly as
input. For example, the system by Hardenberg [6] detects and
tracks unmarked hands using computer vision techniques in order
to select and move objects in 2D. In essence, the system allows a
pointing finger to control 2D mouse cursor movement, with a
single second delay to simulate button clicks. Similarly, the
BareHands system [16] describes a method to interact with a large
touch screen by mapping various hand postures to commands
such as copy and paste, thereby saving the user from having to
select these operations from a menu.

In most of the above mentioned systems that use back-projected
displays [16] [25], the main drawback is the frequent occlusion of
the screen area by the hands. As a result, a user frequently tries to
peer around the occluding hand or moves it away from screen,
thereby disrupting the focus of attention. Clever placement of
widgets and menus can remedy the situation somewhat [24], but
at the expense of lost screen real estate or more complicated menu
layouts.

Our work largely builds upon the Visual Panel system described
by Zhang et al. in [26]. In their system they track a quadrangle
shaped piece of paper using single-view computer vision
techniques, then extract the position of a fingertip over the panel
in order to position the mouse cursor in a Windows desktop.
Since the panel is not equipped with any buttons or touch sensors,
mouse clicks are simulated by holding the fingertip position
steady for one second. Text entry is achieved by way of a virtual
on-screen keyboard. Due to the one second delay, text entry and
interface navigation can be quite slow. Additionally, the single
fingertip detector only allows for two degrees of freedom, thereby
limiting the input to single cursor mouse control. However, by
extracting the X and Y orientation of the actual panel from some
base pose, they are able to simulate a joystick which is useful for
another two degrees of freedom.

Using the Visual Panel as a starting point, we present a variety of
new interaction techniques that are possible when we combine it
with stereo cameras and a more sophisticated gesture recognition
system that can detect more than a single hand or finger as well as
fingertip contact with the panel surface. Also, by augmenting the
live images of a user’s actual hands directly into the graphical
interface, our Visual Touchpad begins to provide a more
compelling “hands-on” experience similar to tabletops or touch-
screens while the use of transparency during augmentation avoids
the occlusion problems associated with other hand-based
interaction schemes such as tabletops or Tablet PCs. Figure 1
shows some example configurations of our system.

Various researchers have recognized the value in augmenting
displays with overlaid live video proxies of the body for
compelling visual feedback. Tang's Videowhiteboard [20] and
Ishii & Kobayashi's ClearBoard [7] display overlaid video of a
collaborator working on a shared planar workspace. Buxton [1]
presents a good discussion of these and related earlier work,
which lies primarily in the area of shared workspaces and
collaboration. Roussel's VideoPointer [17] proposes the overlay
of a user's hand as an expressive remote pointing device. In their
Video FaceTop [19], Stotts, Smith & Jen overlay the desktop with
a live video reflection of the user, which can be used to
manipulate onscreen widgets.

With the exception of the latter, these works use overlaid live
video primarily for remote awareness in applications such as
teleconferencing, and do not make use of the video proxy as an
active user input. In contrast, we make use of the self-image both
to provide visual feedback without occlusion, and as a direct user
input mechanism in a similar spirit to that of [19].

3. SYSTEM OVERVIEW
3.1 Hardware
Similar to the Visual Panel [26], the Visual Touchpad is a simple
quadrangle panel such as a piece of paper with a rigid backing,
over which hand gestures can be recognized for interaction
purposes. In our system, we use a piece of paper with a large
black rectangle in the centre, surrounded by a thin white border.
This black region defines the active “touchpad”, while the white
border facilitates the vision algorithms described later. The size
of the paper can be any size as long as we can place both hands
comfortably over the touchpad. Additionally, the touchpad
should ideally have the same aspect ratio as the display that will
be used for visualization. Section 3.4 discusses this in more
detail.

Two off-the-shelf web cameras are then placed in a convenient
location such that the black rectangular region of the touchpad is
fully visible to both cameras, and the cameras are placed with a
sufficiently wide baseline for accurate depth estimation. The
cameras can capture 320x240 images at 30 frames per second on a
standard Pentium 4 PC. For desktops, laptops, and kiosk
configurations, it is sufficient to fix the location of the touchpad
in front of the display, and then place the cameras on top of the
display facing downward (Figure 1a and Figure 1b). For
interacting with large wall displays from afar, we propose
attaching the cameras directly to the panel (Figure 1c) and using
the panel as a handheld input device, instead of hanging the
cameras from the ceiling as in the original Visual Panel work.
The advantage with our fixed panel approach is that the system is
easier to set up, and the pattern will always be visible to the
cameras. The disadvantage is that we lose the ability to extract
the panel orientation, but we make up for these lost degrees of
freedom with a more sophisticated hand gesture recognition
system.

3.2 Homography Computation
To simulate a touch-sensitive surface, we assume that the corners
of the touchpad map to the corners of the display (Figure 2). In
order to determine this mapping, we use a homography [4], which
defines a plane-projective mapping between two planes. In order
to compute a homography we require the positions of at least four
points on one plane and the corresponding four points on the
other plane.

Figure 2. Touchpad to screen mapping.

Therefore, for each of our cameras, we detect the four corners of
the touchpad in a captured video frame and then compute
Hi є {1,2}, which represents the homography that maps camera i’s
view of the touchpad into display coordinates.

To find the corners of the touchpad in a frame of video, we use
simple binary image processing operations. First we threshold a
grayscale version of the video frame into a binary image in order
to segment out the high contrast black rectangle that is surrounded
by the thin white border (Figures 3a and 3b). We currently use a
fixed value of 128 for our 8-bit grayscale image threshold, which
works well in most situations. A flood-fill technique is then used
to extract the largest black connected component in the video
frame, and for this black blob we extract the four strongest corner
features (Figure 3c). A homography is then computed using these
four touchpad corners and the corresponding corners of the
display. The assumption here is that the Visual Touchpad fills
most of the image such that the largest black blob region will
correspond to the black rectangular region of the touchpad.

Figure 3. Touchpad detection: (a) Original frame; (b)

Thresholded binary image; (c) Corners detected.

3.3 Hand Tracking
In this section we describe the details of the hand tracker, which
applies low-level image processing operations to each frame of
video in order to detect the locations of the fingertips. While a
model-based approach that uses temporal information could
provide more robustness to situations such as complex
backgrounds or overlapping hands, the image processing
approach is straightforward to implement and can run in real-time
with low cost PCs and cameras.

3.3.1 Image Rectification
Using Hi defining the mapping from the touchpad in camera i to
screen space, our hand tracker first warps each frame of live video
so that the panel (and any hand over top of it) is in screen space.
Let pj represent a pixel in screen space, and qj represent the
corresponding pixel from touchpad space. Therefore we have

jij pHq �� 1−= (1)

Figure 4a and 4b show the result of creating a warped (screen
space) image of the touchpad with a hand over top of it

3.3.2 Background Subtraction
Since we assume a black rectangular region for our panel, it is
easy to segment out the hand from the warped image by using a
simple background subtraction operation, where our background
is simply a black rectangle covering the whole screen (Figure 4c).
By using a black region as our known background, the system is
quite robust to shadows cast onto the touchpad by foreground
objects such as hands. Additionally, the system can reliably
detect foreground objects in a wide variety of lighting conditions
as long as they are different from the black background.

(a) (b) (c)

3.3.3 Hand Blob Detection
A flood-fill technique is then applied to the foreground objects,
and the two largest connected blobs above some threshold size are
assumed to be the hand blobs. Assuming that hands will not cross
over during interaction, we simply label the left-most blob as the
left hand, and the right-most blob as the right hand. In the case of
only a single blob, we consider it to be either the left or right hand
depending on a software setting that defines a user’s dominant
hand preference.

3.3.4 Fingertip Detection
The contours of each blob are then detected in a clockwise order
and potential fingertips are found by finding strong peaks along
the blob perimeters. We first use an approach similar to [18],
where the vectors from a contour point k to k+n and k-n are
computed (for some fixed n). If the angle between these vectors is
below some threshold (we currently use 30 degrees) then we mark
that contour point as a potential fingertip. To avoid detecting
valleys (such as between fingers) we verify that the determinant of
the 2x2 matrix consisting of the two vectors is negative. Non-
maximal suppression is then used to avoid detecting strong
fingertips too close to one another. Finally, orientation is
determined by computing a line from the midpoint between
contour points k+n and k-n to the fingertip point k. Figure 4d
shows the result of fingertip position and orientation detection.

Figure 4. Hand detection in the warped image: (a) Original

image; (b) Warped image; (c) After background subtraction;
(d) Finger tip positions and orientations detected.

3.3.5 Fingertip Labeling
If a single fingertip is detected in the contour, it is always labeled
as the index finger. If two fingers are detected, the system
assumes they are the thumb and index finger, using the distance
between each fingertip along the contour to differentiate between
the two. For example, for the right hand, the distance from the
index finger to the thumb is larger in the clockwise contour
direction than the distance from the thumb to index finger. For
three, four, and five finger arrangements we use a similar contour-
distance heuristic for the labeling, with label priority in the
following order: index finger, thumb, middle finger, ring finger,
little finger.

3.3.6 Detecting Contact with the Visual Touchpad
For each camera, the hand detector gives us the (x,y) position of
fingertips in screen space, as well as the orientation angle Θ of the
finger. For fingertips directly on the surface of the touchpad, the
positions will be the same regardless of whether we use the pose
information from the warped image from camera 1 or the warped
image from camera 2. However, for fingertips above the touchpad
surface the positions of corresponding points will be different

since the homography only provides a planar mapping (Figure 5).
This disparity of corresponding points can thus be used to
determine the distance of feature points above the touchpad
surface [21]. To determine a binary touch state, we define a
disparity threshold below which we consider a point to be in
contact with the touchpad. For a given camera configuration, a
threshold can be easily determined by holding the finger at a
height above the touchpad which should be considered “off” the
surface. The disparity of the fingertip position can then be used as
the disparity threshold. In our experiments we have found that
holding the finger approximately 1cm above the surface works
well. The final output from our hand tracker is a set of (x,y,z,Θ)
values for each detected fingertip, where z is a boolean value
representing whether the finger is touching the surface. Note that
we set one of our cameras to be the reference camera, and thus the
(x,y) values for each fingertip are extracted from the hand contour
associated with that camera. Additionally, the tracker can also
provide temporal information, resulting in five parameters for
each fingertip. The advantage of using disparity instead of 3D
triangulation is that we do not need to perform camera calibration
of any sort, which makes the system extremely simple to set up.

Figure 5. Using disparity for sensing height of raised fingers:

(left) Rectified camera 1 view; (middle) Rectified camera 2
view; (right) Images overlaid together show corresponding

points for raised fingers are not in same position.

3.3.7 Postures and Gestures
Given the output of the hand tracker, it is extremely simple to
detect the four static postures depicted in Figure 6. The pointing
posture is simply the index finger held straight out in some
direction. The pinching posture involves setting the thumb and
index finger as if something is being held between them, with the
thumb and index finger pointing in relatively the same direction.
The L-posture is a variation of the pinching posture, where the
thumb and index finger are pointing in approximately orthogonal
directions. For both the pinch posture and L-posture we can
overload the recognition system with variations such as both
fingers touching the touchpad surface, both fingers not touching
the surface, or one finger on the surface and one finger off the
surface. Finally the five-finger posture is simply holding out all
fingers so that the hand detector can clearly identify all fingertips.

Figure 6. Posture set: (a) Pointing; (b) Pinching; (c) L-posture;

(d) Five-finger posture.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Along with the static postures, our system can also detect gestures
using temporal information. To demonstrate this capability, we
currently detect a holding gesture (for all postures), a double-tap
gesture (for the pointing posture), and an X shape gesture (also
for the pointing posture). While these gestures are fairly simple
there is nothing preventing our system from recognizing more
complicated gestures, since all of the required information is
available.

3.4 Hand Augmentation
The ability to use your hand for direct manipulations is one of the
main advantages of devices such as tabletop displays or touch-
screens. Roussel’s VideoPointer system [17] proposed using a
live video stream of a user’s hand as a better telepointer for real-
time groupware. Building on this idea, we propose augmenting
the user’s hand directly into the graphical interface, using the live
video of the segmented hand region from the reference camera as
a visual proxy for direct manipulations. The advantage of this
approach is that a user feels more connected to the interface in a
manner similar to tabletops or touch-screens, but while using an
external display such as a monitor. The other advantage is that by
rendering the hand as an image, we can apply other special effects
such as transparency to help overcome the occlusion problem, as
well as visual annotations onto the hand such as mode or state
information. Figure 7 shows an example of a hand being
augmented onto a graphical interface.

 Figure 7. Hand augmentation: (a) No fingers; (b) Finger

above surface; (c) Finger contacting touchpad.

Note that the size of the hand on the screen is dependent upon the
size of the touchpad, due to the touchpad-screen homography; the
larger the touchpad, the smaller the hand appears on the screen,
and vice-versa. Thus the size of the panel should be proportional
to the size of the display. As mentioned earlier, it is also best to
have similar aspect ratios for the display and the touchpad so that
the hand is rendered realistically.

When no fingers are detected by the hand tracker, any hand blobs
are rendered with 50% opacity (Figure 7a). As soon as any
fingers are detected, each fingertip is drawn at 85% opacity with
gradual falloff to 50% opacity using a fixed falloff radius (Figure
7b). This allows the hand to come into focus when the user is
performing some action. Additionally, when a fingertip is
determined to be in contact with the touchpad, a yellow highlight
is rendered beneath it for visual touch feedback (Figure 7c).

4. INTERACTION TECHNIQUES
To demonstrate the capabilities of the Visual Touchpad, a simple
picture manipulation application has been implemented. A
number of images are scattered around a canvas, and using hand
gestures the user is able to move/rotate/scale the images, query
object properties, pan/rotate/zoom the view, etc. Using some of
the postures and gestures described earlier we show that the
Visual Touchpad can be used to perform a variety of common
GUI operations in a fluid manner.

4.1 One-handed Techniques
4.1.1 Object Selection/Translating/Rotating/Query
To select an image on the canvas, a single hand in a pointing
posture can be positioned so that the fingertip is within the
bounds of the object, with the fingertip touching the surface of the
Visual Touchpad. When the finger makes contact with the
touchpad a yellow glow appears around the fingertip.
Additionally, the borders of the selected image become green to
signify that it has been selected. To deselect the object, the user
simply raises the fingertip up from the touchpad surface until the
yellow glow disappears.

Once an object has been selected, it can be simultaneously
translated and rotated. Translation is controlled by simply
moving the finger in the appropriate direction. The image then
remains attached to the fingertip. Similarly, the orientation of the
finger controls the rotation of the object, with the centre of
rotation being the fingertip position. Figure 8 shows an image
being translated and rotated using the pointing gesture.

To query an object for information (such as file name, image
dimensions, etc) we use an approach similar to tooltips found in
graphical interfaces such as Windows. By simply holding a
pointing posture for one second inside the boundaries of an
image, but without touching the touchpad surface, a small query
box is activated. Moving the finger out of the image dismisses the
query box.

Figure 8. Image translation and rotation.

4.1.2 Group Selection/Copy/Paste/Delete
To select a group of images for operations such as copying or
deleting we can make use of the double-tap gesture. By double-
tapping on an image a yellow highlight appears around it
signifying that it has been added to the current group. To remove
a selected image from the group we simply double-tap it again. A
single tap in any empty canvas location causes the entire group of
objects to be deselected.

The selected group is always the set of objects in the clipboard so
there is no need to explicitly perform a copy operation. To paste
the selected group of images we use the L-posture with both
fingers above the touchpad surface. The index finger position
defines the centre of the selected group, and translation or rotation
of the L-posture can be used to place the group in the desired
location. To finalize the positioning the user simply places both
the index finger and thumb onto the touchpad surface. After the
paste operation, the new set of images becomes the active group
selection. Note that the second hand can be used to navigate the
canvas viewpoint simultaneously (as described in the next
section). To cancel the paste operation the user can touch the
thumb and index finger together without touching the touchpad
surface. To delete a selected group of images a user draws an X
in an empty part of the canvas.

(a) (b) (c)

4.1.3 Canvas Panning/Rotating/Zooming
To control the canvas viewpoint we use an approach similar to the
SmartSkin map viewer [15]. Using a pinching posture, where the
thumb and index finger are in contact with the surface of the
touchpad, the user can simultaneously control the position,
orientation, and zoom level of the window into the canvas. The
idea is that as soon as two fingers make contact with the touchpad,
they become “attached” to the corresponding positions within the
canvas. Moving the hand around the canvas while maintaining
the pinch posture causes the window into the canvas to move in a
similar direction. To rotate the entire canvas, the hand can be
rotated while the pinch posture is maintained. The centre of
rotation is thus defined as the midpoint between the tips of the
thumb and index finger. Finally, bringing the fingers closer
together while still touching the surface causes the view to be
zoomed out, while moving the fingers further apart causes the
view to be zoomed in. The centre of zoom is defined as the
midpoint between the thumb and index finger. In all cases, when
translation, rotation or zooming becomes difficult due to the hand
ending up in an awkward pose, the operation can be continued by
simply raising the fingers off the touchpad surface, adjusting the
hand to a comfortable position again, and then continuing the
viewpoint control. Figure 9 shows an example of a pinch posture
controlling the zoom level.

Figure 9. Canvas zoom control.

4.1.4 Navigation Widget
While the canvas viewpoint control described above works well
for small adjustments of the canvas, it is inefficient when large-
scale viewpoint changes are required. Since we are able to
recognize postures and gestures above the touchpad surface, we
propose a navigation widget that can be used for continuous
scrolling of the viewpoint. To activate the widget the user holds a
pinch posture steady for one whole second above the surface of
the touchpad. Once activated, the system captures the midpoint
between the thumb and index finger as the “centre” position. A
navigation arrow then appears between the thumb and index
finger, with a line connecting the current midpoint between the
thumb and index finger to the “centre” position (Figure 10).

The widget then acts much like a joystick, where translation in
any direction away from the “centre” causes the viewpoint to
translate in that direction, with scrolling speed dependent upon
the distance of the widget from the “centre”. Canvas zooming can
also be performed, by treating the navigation widget as a dial,
where the “zero” rotation is the finger orientation at the “centre”
pose. Therefore, rotation of the fingers in a clockwise direction
causes the view to be zoomed in, while a counter-clockwise
rotation causes the view to be zoomed out. The amount of
rotation from the “zero” defines the speed of the zoom. To

deactivate the widget, the user can simply pinch the fingers
together completely.

Figure 10. Navigation widget.

4.2 Two-handed Techniques
4.2.1 Pie Menu
Asymmetric-dependent tasks, as proposed by Guiard [5], are those
in which the dominant (D) hand moves within a frame of
reference that has been set by the non-dominant (ND) hand.
Therefore, the ND hand will engage in coarse and less frequent
actions, while the D hand will be used for faster, more frequent
actions that require more precision. Kabbash [8] showed that
such asymmetric-dependent interaction techniques, where the
action of the D hand depends on that of the ND hand, give rise to
the best performance since they most closely resemble the
bimanual tasks that we perform in everyday life.

We follow such an asymmetric-dependent approach for our pie
menu system that is used to select various options. To activate the
pie menu the user performs a double-tap gesture using the ND
hand. The pie menu (with a small hollow centre) is then
displayed, centered at the ND hand’s index finger. If the user
maintains contact with the touchpad surface, the pie menu will
remain centered at the index finger. If the index finger is raised
from the surface, the pie menu will remain at the previous
position, thereby allowing the user to select menu options with a
single-tap. Another double-tap in the hollow centre is used to
deactivate the pie menu. To illustrate the functionality of the pie
menu, we implemented a simple drawing tool that allows the user
to “finger-paint” onto the canvas. The pie menu consists of the
following options: drawing mode, draw color, draw size, draw
shape.

The drawing mode option acts as a toggle switch. When selected,
the D hand’s fingertip becomes a paintbrush, with an appropriate
cursor drawn at its tip. The user can then paint strokes with the D
finger when it is in contact with the touchpad surface.

By selecting the draw color option, a color palette is presented to
the user. Moving the ND fingertip within the palette (while
making contact with the touchpad surface) sets the color of the D
hand’s fingertip. To deactivate the color palette the user simply
moves the ND fingertip out of the palette area.

The draw size menu option allows the size of the paintbrush tip to
be modified. A slider appears when the option is selected, which

Zooming in Zooming out

Translation Zooming

can be modified by “dragging” the slider handle using the ND
finger much like many 2D GUIs. The slider is deactivated by
moving the ND finger outside of the slider’s rectangular border.

Finally, the draw shape menu option allows the user to change the
shape of the paintbrush tip. Four simple shapes are currently
implemented as shown in Figure 11. Unlike traditional painting
tools, ours allows for simultaneous control of not only the brush
tip’s position but also the tip orientation, thereby allowing for
interesting calligraphic effects.

Figure 11. Pie menu for finger-painting.

4.2.2 Image Stretchies
Kurtenbach et al [11] introduced an interaction technique called
“two handed stretchies” that allow primitive shapes to be
simultaneously translated, rotated and scaled using two rotation-
sensitive pucks on a tablet surface. The Visual Touchpad is also
capable of such techniques using two-handed postures instead of
pucks.

One hand with a pointing posture selects an object as usual. The
position of the fingertip is then “locked” onto the selected image.
The second hand then selects another position within the same
image, and that position becomes “locked”. Translating both
fingers at the same rate and in the same direction allows for the
image to be moved. However, translating the fingers in different
directions or at different speeds will cause rotation and scale
changes. The idea is that the two “locked” finger positions will
always represent the same pixel in the image. While we currently
do not use the finger orientations for this stretch operation, we
plan to integrate it into the system in the future to allow for a
simultaneous image warp as well.

4.2.3 Two-handed Virtual Keyboard
Many applications such as presentation tools, drawing tools, or
web browsers require frequent switching between text entry
(keyboard) and navigation (mouse). Virtual keyboards [9] are one
approach to making text entry and navigation more fluid. By
rendering a graphical layout of a keyboard on the screen, a user
does not have to switch between input devices and can instead
focus more on the desired task. Additionally, virtual keyboards
can be reconfigured to different layouts based on a user’s personal
preferences. The downfall with most virtual keyboards is that
they rely on single mouse clicks to simulate key presses, resulting
in slow text entry.

Motivated by the familiarity and reconfigurability of virtual
keyboards, we have implemented an onscreen QWERTY keyboard
for the Visual Touchpad that can be used to make textual
annotations on our image canvas. To activate the virtual
keyboard, a user makes a five-finger gesture with both hands over
the touchpad (Figure 12). This gesture simulates putting the
hands onto “home-row” on a real keyboard. The virtual keyboard

is then rendered transparently on the screen, with the hands
rendered over top. By default, the text entry cursor is placed at
the canvas location corresponding to the middle of the screen,
above the virtual keyboard. Letters can then be entered by simply
touching the appropriate virtual keys with the fingertips. The
virtual keyboard is deactivated by pressing the virtual “Escape”
key. Note that the mapping between the touchpad and the virtual
keyboard is not dependent on the canvas window settings.
Instead, the size and position of the virtual keyboard is fixed to
some predetermined absolute region of the touchpad and a
corresponding region of the screen so that the spatial layout of the
keys remains constant.

By rendering the hands and keyboard together on the display,
users do not have to divert their visual attention away from the
onscreen task. Additionally, by using the same input surface for
both text-entry and GUI navigation, the experience is much more
fluid compared to traditional keyboard-mouse configurations. It
is worth mentioning, however, that the current implementation
does not allow for extremely fast text entry, largely due to the
limited speed of our camera capture and image processing
operations.

Figure 12. Virtual keyboard.

5. DISCUSSION
While detailed user experiments have not yet been performed,
informal user feedback from students in our research lab has been
very positive. Each user was given a brief introduction to the
posture and gesture set, and then they were free to explore the
system on their own for 10 to 15 minutes.
All users found the posture and gesture based manipulations to be
extremely intuitive, with descriptions such as “cool”, “neat”, and
“fun” to describe the overall system. One of the first things many
people were impressed with was the ability to see their own hands
on the screen, and as a result they found the direct manipulation
techniques to be very compelling.
The asymmetric two-handed pie menu required a quick
introduction in most cases, but afterwards all users found the pie
menu to be easy to use. Although our pie menu only has four
options on it, we tried a quick experiment to see if hand
transparency makes any difference when portions of the menu end
up beneath the hand. Some users were given a version with a
fully opaque hand, while others were given a transparent hand. It
was observed that a few of the opaque hand users would
frequently move their hand off to the side of the pie menu if an
option’s title was occluded by the hand, while we did not see this
with the transparent hand users. A more extensive study is
required to accurately determine how effective our transparent
hands are against occlusion, but these preliminary observations
are encouraging.

While many users liked the idea of fluidly switching between
navigation and text-entry modes, most felt that the virtual
keyboard has some drawbacks. Most notably, it was felt that the
lack of tactile feedback during keypresses made text entry
awkward and prone to errors, since it was difficult to determine
key boundaries. One user suggested using some more cues to
signify which key was about to be pressed, such as highlighting
the most likely key based on the trajectory of the fingertip, or
generating audible key clicking sounds. Another complaint with
the virtual keyboard was that it occupied a significant amount of
screen real estate. An interesting suggestion was to gradually
increase or decrease the transparency of the virtual keyboard
based on a user’s typing speed or idle time, under the assumption
that a fast typist has memorized the spatial arrangement of the
keys and does not need to see the keyboard as much.
In terms of system limitations, there are a few things worth
mentioning. Since the cameras are assumed to be above the
touchpad surface facing downward, gestures that require fingers
to point straight down cannot be recognized by the hand tracker.
While such gestures are simple to detect on devices such as
SmartSkin [15], the vision system still affords other features such
as multi-layer gesture recognition and accurate finger orientations.
We are currently attempting to combine an actual touch sensitive
surface (a Mitsubishi DiamondTouch) with our Visual Touchpad
to leverage the benefits of both devices, and preliminary
observations are promising.
For large wall displays we mentioned that a hand-held Visual
Touchpad would be appropriate when a direct manipulation
interface is desired. Our current two-handed interaction
techniques do not work well for such a setup since the ND hand is
required to hold the actual touchpad. Instead, for such large wall
interaction it would be more appropriate to investigate two-
handed techniques that allow the ND hand’s four fingers to hold
the panel from behind while the thumb rests on the touchpad
surface from the front. The thumb could then be “twiddled” much
like a gamepad on a video game console, but in an asymmetric-
dependent manner with the D hand.

6. CONCLUSION
In this paper we presented the Visual Touchpad, a low-cost
vision-based input device that allows for fluid two-handed
gestural interactions much like those available on more expensive
tabletop displays or touch-screens. While we demonstrated the
capabilities of the Visual Touchpad in a simple image
manipulation application, there are still many possibilities for new
two-handed interaction techniques that further exploit the
strengths of the system.

7. ACKNOWLEDGEMENTS
We thank Ravin Balakrishnan, Allan Jepson, and Abhishek
Ranjan from the University of Toronto for valuable discussions.

8. REFERENCES
[1] Buxton, W. (1992). Telepresence: integrating shared task and person

spaces. In Proceedings of Graphics Interface, pp. 123-129.

[2] Chen, X., Koike, H., Nakanishi, Y., Oka, K., Sato, Y. (2002). Two-
handed drawing on augmented desk system. In Proceedings of
Advanced Visual Interfaces (AVI). pp. 219-222.

[3] Corso, J., Burschka, D., Hager, G. (2003). The 4D Touchpad:
Unencumbered HCI with VICs. In Proceedings of CVPR-HCI.

[4] Faugeras, O., Luong, Q. (2001). The Geometry of Multiple Images. The
MIT Press.

[5] Guiard, Y. (1987). Asymmetric Divison of Labor in Human Skilled
Bimanual Action: The Kinematic Chain as a Model. Journal of Motor
Behavior, 19(4). pp. 486-517.

[6] Hardenberg, C., Berard, F. (2001). Bare-hand Human-computer
Interaction. In Proceedings of ACM Workshop on Perceptive User
Interfaces (PUI).

[7] Ishii, H., Kobayashi, M. (1992). ClearBoard: a seamless medium for
shared drawing and conversation with eye contact. In Proceedings of
ACM CHI Conference. pp. 525-532.

[8] Kabbash, P., Buxton, W., Sellen, A. (1994). Two-Handed Input in a
Compound Task. In Proceedings of ACM CHI Conference. pp. 417-423.

[9] Kolsch, M., Turk, M. (2002). Keyboards without Keyboards: A Survey
of Virtual Keyboards. Technical Report 2002-21. University of
California, Santa Barbara.

[10] Krueger, M. (1991). VIDEOPLACE and the Interface of the Future. In
The Art of Human Computer Interface Design. Addison Wesley, Menlo
Park, CA. pp. 417-422.

[11] Kurtenbach, G., Fitzmaurice, G., Baudel, T., Buxton, B. (1997). The
Design of a GUI Paradigm based on Tablets, Two-hands, and
Transparency. In Proceedings of ACM CHI Conference. pp. 35-42.

[12] MacCormick, J., Isard, M. (2000). Partitioned sampling, articulated
objects, and interface-quality hand tracking. In Proceedings of the
European Conference on Computer Vision (ECCV), Volume 2. pp. 3-19.

[13] Mysliwiec, T. (1994). FingerMouse: A Freehand Computer Pointing
Interface. Technical Report VISLab-94-001, University of Illinois
Chicago.

[14] Oka, K., Sato, Y., & Koike, H. (2002). Real-time tracking of multiple
fingertips and gesture recognition for augmented desk interface systems.
In Proceedings of IEEE Conference on Automatic Face and Gesture
Recognition (FG). pp. 429-434.

[15] Rekimoto, J. (2002). SmartSkin: An Infrastructure for Freehand
Manipulation on Interactive Surfaces. In Proceedings of ACM CHI
Conference. pp. 113-120.

[16] Ringel, M., Berg, H., Jin, Y., and Winograd, T. (2001). Barehands:
Implement-Free Interaction with a Wall-Mounted Display. In
Proceedings of ACM CHI Conference Extended Abstracts. pp. 367-368.

[17] Roussel, N. (2001). Exploring new uses of video with videoSpace.
In Proceedings of the IFIP Conference on Engineering for HCI, Volume
2254 of Lecture Notes in Computer Science, Springer. pp. 73-90.

[18] Segen, J., & Kumar, S. (1998). GestureVR: Vision-based 3D Hand
Interface for Spatial Interaction. In Proceedings of the Sixth ACM
International Conference on Multimedia. pp. 455-464.

[19] Stotts, D., Smith, J., and Jen, D. (2003). The Vis-a-Vid Transparent
Video FaceTop. In Proceedings of ACM UIST. pp. 57-58.

[20] Tang, J. & Minneman, S. (1991). Videowhiteboard: video shadows to
support remote collaboration. In Proceedings of ACM CHI Conference.
pp. 315-322.

[21] Trucco, E., Verri, A. (1998). Introductory Techniques for 3-D Computer
Vision. Prentice-Hall.

[22] Ukita, N., Kidode, M. (2004). Wearable Virtual Tablet: Fingertip
Drawing on a Portable Plane-Object using an Active-Infrared Camera. In
Proceedings of the International Conference on Intelligent User
Interfaces. pp. 169-176.

[23] Wellner, P. (1993). Interacting with Paper on the DigitalDesk.
Communications of the ACM, 36(7), July 1993. pp. 86-96.

[24] Wu, M., Balakrishnan, R. (2003). Multi-finger and Whole Hand
Gestural Interaction Techniques for Multi-User Tabletop Displays. In
Proceedings ACM UIST. pp. 193-202.

[25] Yee, K. (2004). Two-Handed Interaction on a Tablet Display. In
Proceedings of ACM CHI Extended Abstracts. pp. 1493-1496.

[26] Zhang, Z., Wu, Y., Shan, Y., & Shafer, S. (2001) Visual Panel: Virtual
Mouse, Keyboard, and 3D Controller with an Ordinary Piece of Paper.
In Proceedings of ACM Workshop on Perceptive User Interfaces (PUI).

