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1 Introduction 
 
With the prevalence of powerful workstations and rapid advances in high-speed 
computer network technologies, the use of a network of workstations (NOW) as a 
virtual parallel machine (VPM) has become a viable alternative to expensive, 
dedicated parallel machines.  However, certain differences between the two 
types of machines need to be considered [DAND97a]: 
  
Heterogeneous Nodes: 
Nodes in a multiprocessor system typically consist of homogeneous processors, 
while workstations in a VPM may be different from each other in architecture, 
operation system, CPU speed, memory size, and available disk space. 
 
Load on Nodes: 
In a multiprocessor system, the workload is more predictable and can be 
controlled by a dedicated scheduler.  However, the load on each workstation in a 
NOW can vary from time to time based on the workload brought about by the 
workstation owner as well as other users. 
 
Load on Network: 
Dedicated parallel machines are usually connected using fixed topologies (eg. 
Mesh or hypercube) and implement dedicated, high-speed interconnection 
networks and switching techniques.  VPMs, on the other hand, tend to rely on 
standard LAN technologies that typically exhibit high overhead and low 
bandwidth compared to the dedicated parallel machines.  
 
Node Failures: 
Since owners of workstations have control of that specific network node, a VPM 
on a NOW must take fault-tolerance and fault-recovery into consideration (for 
example, if a workstation owner resets the machine). 
 
Thus, when using a NOW for parallel tasks, one has to cope with the dynamic 
behaviour of the compute nodes, the network load, and the application tasks.  
These can lead to local load imbalances, which hamper the application’s 
execution speed and the overall system performance [ALBA96]. 
 
Considering the serious issues mentioned above, one begins to question the 
viability of a NOW as an alternative to a dedicated parallel processing machine.  
However, studies have shown that 80% of workstations in a typical corporate 
network are idle depending on the time of day [DAND97a].  As a result, it 
becomes worthwhile to investigate some solutions that help to overcome some of 
the performance bottlenecks that a NOW may encounter when performing 
parallel processing.  Load balancing is one such solution. 
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2 Load Balancing 
 
Load balancing is defined as the allocation of the work of a single application to 
processors at run-time so that the execution time of the application is minimized 
[SIEG94].  Since the speed at which a NOW-based parallel application can be 
completed depends on the computation time of the slowest workstation, efficient 
load balancing can clearly provide major performance benefits.  The two major 
categories for load-balancing algorithms are static and dynamic. 
 
2.1 Static Load Balancing 
 
Static load balancing algorithms allocate the tasks of a parallel program to 
workstations based on either the load at the time nodes are allocated to some 
task, or based on an average load of our workstation cluster.  The advantage in 
this sort of algorithm is the simplicity in terms of both implementation as well as 
overhead, since there is no need to constantly monitor the workstations for 
performance statistics.  However, static algorithms only work well when there is 
not much variation in the load on the workstations [LEE95].  Clearly, static load 
balancing algorithms aren’t well suited to a NOW environment, where loads may 
vary significantly at various times in the day, based on the issues discussed 
earlier.  
 
2.2 Dynamic Load Balancing 
 
Dynamic load balancing algorithms make changes to the distribution of work 
among workstations at run-time; they use current or recent load information when 
making distribution decisions [DAND97b]. 
 
As a result, dynamic load balancing algorithms can provide a significant 
improvement in performance over static algorithms.  However, this comes at the 
additional cost of collecting and maintaining load information, so it is important to 
keep these overheads within reasonable limits [DAND97b].  The remainder of 
this report will focus on such dynamic load balancing algorithms. 
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3 Load Balancing Algorithms 
 
The choice of a load balancing algorithm for a VPM is not always an easy task.  
Various algorithms have been proposed in the literature, and each of them varies 
based on some specific application domain.  Some load balancing strategies 
work well for applications with large parallel jobs, while others work well for short, 
quick jobs.  Some strategies are focused towards handling data-heavy tasks, 
while others are more suited to parallel tasks that are computation heavy. 
 
While many different load balancing algorithms have been proposed, there are 
four basic steps that nearly all algorithms have in common [ZAKI96]: 

1. Monitoring workstation performance (load monitoring) 
2. Exchanging this information between workstations (synchronization) 
3. Calculating new distributions and making the work movement decision 

(rebalancing criteria) 
4. Actual data movement (job migration) 

 
3.1 Balancing Strategies 
 
There are three major parameters which usually define the strategy a specific 
load balancing algorithm will employ.  These three parameters answer three 
important questions: i) who makes the load balancing decision, ii) what 
information is used to make the load balancing decision, and iii) where the load 
balancing decision is made. 
 
3.1.1 Sender-Initiated vs. Receiver-Initiated Strategies 
 
The question of who makes 
the load balancing decision 
is answered based on 
whether a sender-initiated or 
receiver-initiated policy is 
employed.  In sender-
initiated policies, congested 
nodes attempt to move work 
to lightly-loaded nodes.  In 
receiver-initiated policies, 
lightly-loaded nodes look for 
heavily-loaded nodes from 
which work may be received 
[DAND97b]. 
 
Figure 1 shows the relative 
performance of a sender-
initiated and receiver-
initiated load balancing Figure 1 – Performance of Sender-Initiated vs. 

Receiver-Initiated Strategies [DAND97b] 
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algorithm on a homogeneous 32-node system.  As can be seen, both the sender-
initiated and receiver-initiated policies perform substantially better than a system 
which has no load sharing.  What we also see is the sender-initiated policy 
performing better than the receiver-initiated policy at low to moderate system 
loads.  [DAND97b] reasons that at these loads, the probability of finding a lightly-
loaded node is higher than that of finding a heavily-loaded node.  Similarly, at 
high system loads, the receiver-initiated policy performs better since it is much 
easier to find a heavily-loaded node.  As a result, adaptive policies have been 
proposed which behave like sender-initiated policies at low to moderate system 
loads, while at high system loads they behave like receiver-initiated policies. 
 
3.1.2 Global vs. Local Strategies 
 
Global or local policies answer the question of what information will be used to 
make a load balancing decision [ZAKI96].  In global policies, the load balancer 
uses the performance profiles of all available workstations.  In local policies 
workstations are partitioned into different groups.  In a heterogeneous NOW, the 
partitioning is usually done such that each group has nearly equal aggregate 
computational power [ZAKI96].  The benefit in a local scheme is that 
performance profile information is only exchanged within the group. 
 
The choice of a global or local policy depends on the behaviour an application 
will exhibit.  For global schemes, balanced load convergence is faster compared 
to a local scheme since all workstations are considered at the same time.  
However, this requires additional communication and synchronization between 
the various workstations; the local schemes minimize this extra overhead.  But 
the reduced synchronization between workstations is also a downfall of the local 
schemes if the various groups exhibit major differences in performance.  
[ZAKI96] notes that if one group has processors with poor performance (high 
load), and another group has very fast processors (little or no load), the latter will 
finish quite early while the former group is overloaded. 
 
3.1.3 Centralized vs. Distributed Strategies 
 
A load balancer is categorized as either centralized or distributed, both of which 
define where load balancing decisions are made.  In a centralized scheme, the 
load balancer is located on one master workstation node and all decisions are 
made there.  In a distributed scheme, the load balancer is replicated on all 
workstations. 
 
Once again, there are tradeoffs associated with choosing one location scheme 
over the other.  For centralized schemes, the reliance on one central point of 
balancing control could limit future scalability.  Additionally, the central scheme 
also requires an “all-to-one” exchange of profile information from workstations to 
the balancer as well as a “one-to-all” exchange of distribution instructions from 
the balancer to the workstations.  The distributed scheme helps solve the 
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scalability problems, but at the expense of an “all-to-all” broadcast of profile 
information between workstations.  However, the distributed scheme avoids the 
“one-to-all” distribution exchange since the distribution decisions are made on 
each workstation. 
 
Figure 2 shows the performance of four different matrix multiplication algorithms 
on 4 and 16 processors respectively.  All algorithms were receiver-initiated while 
the other two parameters were adjusted, resulting in the four different algorithms 
consisting of a Global Centralized Algorithm (GCDLB), Global Distributed 
Algorithm (GDDLB), Local Centralized Algorithm (LCDLB), and a Local 
Distributed Algorithm (LDDLB).  For the 4 processor situation, the global 
schemes perform significantly better than the local schemes, as would be 
expected due to the faster convergence.  However, with 16 processors, the 
differences are not as pronounced since we are seeing the benefits of the 
reduced communication costs associated with the local schemes. 
 

 
 
 
 
3.2 Load Monitoring 
 
In order to make optimal balancing and work distribution decisions, a load 
balancer needs to take some or all of the following information into consideration 
[ALBA96]: 

- available capacity on each node (CPU, memory, disk space) 
- current load of each node 
- required capacity for each task 
- network connectivity and capacity 
- communication pattern for each task (if applicable) 

 

Figure 2 – Matrix Multiplication on 4 and 16 processors [ZAKI96] 
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[DAND97b] notes that the choice of load index to use when measuring the 
performance of a workstation has a considerable effect on the performance of 
the load balancer as a whole. 
 
As with choosing a load balancing strategy, the choice of a load index largely 
depends on an application’s requirements.  A commonly used load index in many 
algorithms is the difference between the time a workstation starts a particular 
task and ends that same task (ie. computation time).  This effectively allows a 
load balancer to compare the time each processor is spending on various tasks.  
Thus the idea behind the use of this load index is to have all workstations 
complete their tasks at roughly the same time.  If this can be achieved, the VPM 
will be balanced in its tasks.  However, this particular load index doesn’t take 
network communication time into consideration.  For equal sized tasks this isn’t a 
major concern, but for loop scheduling algorithms that may adjust the granularity 
of the tasks that get allocated to the various workstations, this becomes an 
important consideration. 
 
Thus, in order to take communication time into consideration, some algorithms 
prefer to use a response time for each workstation and compare it to an average 
response time for all workstations.  In other words, let Ttotali represent the total 
time it takes for a slave machine i to receive its task, perform the computation, 
and return the results.  This value is then used to compute an average Ttotalavg 
across all workstations.  Thus if a particular workstation has a Ttotali value below 
the average Ttotalavg, then this information can be used to possibly reduce the 
amount of work that is sent to workstation i.  Similarly, if workstation i has a 
Ttotali value above the Ttotalavg, then work should potentially be reduced for this 
particular slave.  The downfall to this approach is that it assumes network load is 
relatively constant, which is not true.  Networks tend to experience bursts of 
activity, which could affect the timings taken by the balancer [DAND97b].   
 
3.3 Rebalancing Criteria 
 
There are two major issues that need to be considered before a decision can be 
made regarding attempting to balance the load: 

1. Moving a task to a workstation will increase its load index.  To avoid the 
oscillation of movement, a load balancer must be sure that the movement 
of a task from one workstation to another does not make the other 
workstation have a larger load index than that of the workstation on which 
the task presently resides. 

2. The measure of success of dynamic load balancing is the net reduction of 
execution time achieved by applying the load balancing algorithm.  Thus, 
the load balancer needs to make sure that the potential performance gain 
associated with moving a task from one workstation to another is more 
than the cost of performing an actual job migration. 
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3.4 Checkpointing and Job Migration 
 
When the owner of a workstation claims control of his/her node in the network, 
migrating the job to another workstation is desirable to simply restarting it on 
another workstation [DAND97b].  This implies that the state of a task should be 
captured, after which it is started on a target machine and initialized with the 
captured state.  Correct migration is difficult since the interactions of the task with 
its environment need to be taken into account [ALBA96].  Issues such as dealing 
with open files, handling communications with other tasks, and checkpointing 
overhead all need to be taken into consideration by a job migration system.  
From the perspective of a load balancer, migration is an important issue since 
the balancer needs to consider the overhead associated with job migration in 
order to measure the potential cost when making a balancing decision (see 
Section 3.3 regarding Rebalancing Criteria). 
  
The full details of checkpointing and job migration are an entire topic by 
themselves, so they will not be discussed here.  However, it is sufficient to note 
that a load balancer can make use of a job migration and checkpointing facility as 
long as migration costs can be computed for a specific algorithm.  It is also 
worthwhile to mention that a migration system is not a requirement in a load 
balancer, since some studies have shown that migration doesn’t yield any 
significant performance benefits due to the extra checkpointing and state-
capturing overhead [DAND97b]. 
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4 An Example Load Balancing Algorithm  
 
Most load balancing algorithms are designed based on the performance 
requirements of some specific application domain.  For example, applications 
that exhibit lengthy parallel jobs usually benefit in the presence of a job migration 
system.  However, applications with shorter tasks usually don’t warrant the 
expense of job migration and thus are better handled with clever loop scheduling 
algorithms where the task granularity changes dynamically, as defined in 
[DAND97a].  As a result, only one algorithm will be described here in order to 
provide an overview of the various issues that a typical algorithm must take into 
consideration.  However, all algorithms closely follow the four basic load-
balancing steps outlined at the beginning of Section 3. 
 
4.1 Single Program Multiple Data Computation Model 
 
The Single Program Multiple Data (SPMD) paradigm implies that all the 
workstations run the same code, but operate on different sets of data.  The 
motivation for using SPMD programs is that they can be designed and 
implemented easily, and they can be applied to a wide range of applications such 
as numerical optimization problems and solving coupled partial differential 
equations [LEE95]. 
 
The SPMD computation model is depicted in Figure 3.  Each task is divided into 
operations or iterations.  Workstations execute the same operation 
asynchronously, using data available in the workstation’s own local memory.  
This is followed by a data exchange phase where information can be exchanged 
between workstations (if required), after which all workstations wait for 
synchronization.  Thus each “lock-step” of an SPMD program contains 3 phases: 
 

1. Calculation Phase:  each task will do the required computation.  There is 
no communication between workstations at this point. 

2. Data Distribution Phase: each task will distribute the relevant data to other 
tasks that need it for the next lock-step. 

3. Synchronization Phase: this phase ensures that all tasks have completed 
the same lock-step.  Otherwise there will be problems with tasks using the 
wrong data. 
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If an SPMD program were to be executed on a homogeneous multiprocessor 
system, the workload would be balanced for the entire computation (assuming 
that all tasks were initially evenly distributed).  However, in a NOW, there are 
various other factors that can affect the load and thus contribute to load 
imbalances.   
 
Thus, within the SPMD paradigm in a VPM, we would like to reduce the 
execution time of the program by dynamically shifting/migrating tasks from one 
workstation to another at the end of each lock-step, if required.  There are 2 
things that need to be considered: 

1. determine if there is a need to rebalance the load 
2. find the best distribution of tasks 

 
4.2 SPMD Load Balancer 
 
[LEE95] has developed a global, centralized, sender-initiated load balancing 
algorithm for large, computation-heavy SPMD programs using the following 
parameters: 
 
Tcomputei – the interval between the time at which the first task on workstation i 
starts execution and the time at which the last task on the same workstation 
completes the computation and waits for the synchronization.  This value is thus 
the dynamic workload index for the algorithm, since there is a direct relation 
between Tcomputei and a workstation’s load. 
 
Assuming a program can be decomposed into N tasks and there are P 
workstations, then we have N = ? ni (for i = 1 to P).  Thus ni is the number of 
tasks on workstation i. 
 

Figure 3 – SPMD Computation 
Model [LEE95] 
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Ttaski – the average computation time for each task on a workstation, defined 
as: 

Ttaski = Tcomputei / ni (equation 1) 
 
Thigh – the maximum of Tcompute over all workstations, defined as: 

Thigh = max { Tcomputei } (1 <= i <= P) 
 
Tlow – the minimum of Tcompute over all workstations, defined as: 

Tlow = min { Tcomputei } (1 <= i <= P) 
 
A common approach taken for dynamic load balancing on a NOW is to predict 
future performance based on past information [ZAKI96].  In the SPMD algorithm,  
Ttask can be used to update Tcompute.  Thus if m tasks are moved to 
workstation i, we can solve equation1 to give us an estimation of Tcomputei: 

Ttaski x (ni + m) 
 
The estimation is based on the current workload of the workstation, and it is valid 
because all tasks in an SPMD program are executing the same code.  Tcompute 
will be recalculated after each task reallocation, with Thigh and Tlow updated 
accordingly. 
 
4.3 Meeting the Rebalancing Criteria 
 
Therefore, in order to balance the load, tasks from workstations that have a 
longer Tcompute will be moved to the workstations with a shorter Tcompute.  
However, the algorithm must also take into account the rebalancing criteria as 
discussed in Section 3.3.   
 
For the first rebalancing criteria, assume that we have a workstation k that has 
the current highest Tcompute.  Further assume that L represents the number of 
lock steps remaining, and mi represents the number of tasks workstation i 
transmits or receives.  Therefore, in order to guarantee that moving a task from 
workstation k to a new workstation doesn’t cause the new workstation’s 
Tcompute to be greater than k’s, we check the following condition: 

Ttaskk x nk > min {Ttaski x (ni + 1)} (1 <= i <= P, i != k) 
If this is true, then moving one task from workstation k to another workstation will 
not cause the oscillating effect that was mentioned in Section 3.3. 
 
For the second rebalancing criteria (where we need to verify that attempting to 
balance the load provides some performance gain), we can compute the 
following: 
OldThigh – represents the previous Thigh value before the current load 
balancing decision 
NewThigh – represents the new Thigh value that is computed after meeting 
criteria 1 (which is guaranteed to be lower than OldThigh) 
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Therefore the gain associated with performing load balancing would be: 
Gain = (OldThigh – NewThigh) X L 

 
Assuming that our load balancer knows Toverhead, the cost of performing job 
migration of the SPMD tasks, we can now check criteria 2 using the following: 

Gain >= Toverhead x max {mi} (1 <= i <= P) 
 
If this is true, then we can conclude that it is worthwhile to perform the load 
balancing and job migration. 
 
4.4 Iterative Algorithm 
 
The final iterative algorithm, as outlined by [LEE95], can be summarized as 
follows: 
 
OldThigh = max {Tcomputei} (1 <= i <= P) 
WHILE criteria 1 and 2 are TRUE DO 

FOR i = 1 to P 
Tcompute’ = (ni + 1) x Ttaski 

ENDFOR 
move a task from workstation with Thigh to the one with the smallest Tcompute’ 
Update Tcompute of the workstations involved in task migration 
NewThigh = max {Tcomputei} (1 <= i <= P) 

ENDWHILE 
 
Each iteration of the while loop attempts to move one task from the most heavily 
loaded workstation to the most lightly loaded node, as long as the rebalancing 
criteria are being met.  After some movement, the load monitoring variables are 
recomputed and the while loop repeats.  This continues until the algorithm 
detects that there are no more tasks that can be redistributed without degrading 
performance.  In other words, the while loop iterates until the system is as 
balanced as possible given the current timing information. 
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5 Cluster Management Software and Load Balancing 
 
Cluster Management Software (CMS) is typically installed onto clusters of 
workstations in order to manage and schedule applications that run on these 
systems.  They provide an increased and reliable throughput of user applications 
on the systems they manage by performing load balancing, utilizing spare CPU 
cycles, providing fault tolerance features, etc [BAKE96].   
 
Typically batch jobs are given to the CMS via text files that specify such things as 
the job name, maximum runtime, and desired platform [BAKE96].  A master 
scheduling system, which has an overall view of the NOW, is then given this job 
information.  This is where a load balancing system comes into play. 
 
5.1 LoadLeveler 
 
LoadLeveler is an example of a CMS, which distributes jobs to a cluster of 
workstations or to nodes of a multiprocessor machine [BAKE96].  It’s load 
balancer is implemented using a global, centralized strategy whereby a Central 
Master is responsible for assigning and scheduling jobs to nodes as well as 
continuously maintaining state information [DAND97b].  Thus when a job is first 
submitted to LoadLeveler, its requirements (such as memory, disk space, 
operating system, etc) are compared to all the workstation statistics currently 
available to LoadLeveler.  Once a suitable node or nodes are located, the job is 
dispatched.  Additionally, LoadLeveler supports checkpointing and job migration 
to facilitate the load balancer as well as allow for fault tolerance.  Finally, 
LoadLeveler supports a scalable architecture, since as workstations are added to 
the cluster these additional resources are automatically added to the pool of 
available workstations (transparently to the user). 
 
5.2 Condor 
 
Condor is a public domain CMS which was developed as a research project at 
the University of Wisconsin.  It uses a combination centralized and distributed 
load balancing scheme, whereby each workstation is responsible for scheduling 
its own jobs while the actual load distribution is performed at a centralized 
controller [DAND97b].  Thus the central controller periodically polls each 
workstation and collects state information consisting of a node’s current load as 
well as the number of jobs in the node’s queue.  This information is used to 
compute a workload index at the central controller, which is then passed along to 
each workstation in order to perform its own local job scheduling.  Additionally, 
Condor supports checkpointing, whereby a disk image of an active process is 
stored on the workstation in order to facilitate both fault tolerance and process 
migration [COND00]. 
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6 Conclusion 
 
Load balancing is an important issue in a virtual parallel machine built using a 
low-cost network of workstations.  The most difficult aspect of load balancing in a 
network of workstations involves deciding on which algorithm to use.  Hundreds 
of various algorithms have been proposed, and each one has its own specific 
motivations and design decisions that result in trade-offs that aren’t always suited 
to every imaginable task. 
 
This report described many of the design issues that are commonly considered 
when deciding on a load balancing algorithm (such as global/local, 
centralized/distributed, etc.), as well as the tradeoffs associated with the various 
parameters and strategies.  Additionally, this report outlined the details of an 
algorithm targeted towards SPMD style programs in order to present a concrete 
example of the details associated with an actual load balancing implementation.  
Finally, the load balancing features for two cluster management software 
packages (LoadLeveler and Condor) were described briefly. 
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