

Dynamic Load Balancing in a Network of Workstations

95.515F Research Report
By: Shahzad Malik (219762)

November 29, 2000

 2

Table of Contents

1 Introduction 3

2 Load Balancing 4
 2.1 Static Load Balancing 4
 2.2 Dynamic Load Balancing 4

3 Load Balancing Algorithms 5
 3.1 Balancing Strategies 5
 3.1.1 Sender-Initiated vs. Receiver-Initiated Strategies 5
 3.1.2 Global vs. Local Strategies 6
 3.1.3 Centralized vs. Distributed Strategies 6
 3.2 Load Monitoring 7
 3.3 Rebalancing Criteria 8
 3.4 Checkpointing and Job Migration 9

4 An Example Load Balancing Algorithm 10
 4.1 Single Program Multiple Data Computation Model 10
 4.2 SPMD Load Balancer 11
 4.3 Meeting the Rebalancing Criteria 12
 4.4 Iterative Algorithm 13

5 Cluster Management Software and Load Balancing 14
 5.1 LoadLeveler 14
 5.2 Condor 14

6 Conclusion 15

7 References 16

 3

1 Introduction

With the prevalence of powerful workstations and rapid advances in high-speed
computer network technologies, the use of a network of workstations (NOW) as a
virtual parallel machine (VPM) has become a viable alternative to expensive,
dedicated parallel machines. However, certain differences between the two
types of machines need to be considered [DAND97a]:

Heterogeneous Nodes:
Nodes in a multiprocessor system typically consist of homogeneous processors,
while workstations in a VPM may be different from each other in architecture,
operation system, CPU speed, memory size, and available disk space.

Load on Nodes:
In a multiprocessor system, the workload is more predictable and can be
controlled by a dedicated scheduler. However, the load on each workstation in a
NOW can vary from time to time based on the workload brought about by the
workstation owner as well as other users.

Load on Network:
Dedicated parallel machines are usually connected using fixed topologies (eg.
Mesh or hypercube) and implement dedicated, high-speed interconnection
networks and switching techniques. VPMs, on the other hand, tend to rely on
standard LAN technologies that typically exhibit high overhead and low
bandwidth compared to the dedicated parallel machines.

Node Failures:
Since owners of workstations have control of that specific network node, a VPM
on a NOW must take fault-tolerance and fault-recovery into consideration (for
example, if a workstation owner resets the machine).

Thus, when using a NOW for parallel tasks, one has to cope with the dynamic
behaviour of the compute nodes, the network load, and the application tasks.
These can lead to local load imbalances, which hamper the application’s
execution speed and the overall system performance [ALBA96].

Considering the serious issues mentioned above, one begins to question the
viability of a NOW as an alternative to a dedicated parallel processing machine.
However, studies have shown that 80% of workstations in a typical corporate
network are idle depending on the time of day [DAND97a]. As a result, it
becomes worthwhile to investigate some solutions that help to overcome some of
the performance bottlenecks that a NOW may encounter when performing
parallel processing. Load balancing is one such solution.

 4

2 Load Balancing

Load balancing is defined as the allocation of the work of a single application to
processors at run-time so that the execution time of the application is minimized
[SIEG94]. Since the speed at which a NOW-based parallel application can be
completed depends on the computation time of the slowest workstation, efficient
load balancing can clearly provide major performance benefits. The two major
categories for load-balancing algorithms are static and dynamic.

2.1 Static Load Balancing

Static load balancing algorithms allocate the tasks of a parallel program to
workstations based on either the load at the time nodes are allocated to some
task, or based on an average load of our workstation cluster. The advantage in
this sort of algorithm is the simplicity in terms of both implementation as well as
overhead, since there is no need to constantly monitor the workstations for
performance statistics. However, static algorithms only work well when there is
not much variation in the load on the workstations [LEE95]. Clearly, static load
balancing algorithms aren’t well suited to a NOW environment, where loads may
vary significantly at various times in the day, based on the issues discussed
earlier.

2.2 Dynamic Load Balancing

Dynamic load balancing algorithms make changes to the distribution of work
among workstations at run-time; they use current or recent load information when
making distribution decisions [DAND97b].

As a result, dynamic load balancing algorithms can provide a significant
improvement in performance over static algorithms. However, this comes at the
additional cost of collecting and maintaining load information, so it is important to
keep these overheads within reasonable limits [DAND97b]. The remainder of
this report will focus on such dynamic load balancing algorithms.

 5

3 Load Balancing Algorithms

The choice of a load balancing algorithm for a VPM is not always an easy task.
Various algorithms have been proposed in the literature, and each of them varies
based on some specific application domain. Some load balancing strategies
work well for applications with large parallel jobs, while others work well for short,
quick jobs. Some strategies are focused towards handling data-heavy tasks,
while others are more suited to parallel tasks that are computation heavy.

While many different load balancing algorithms have been proposed, there are
four basic steps that nearly all algorithms have in common [ZAKI96]:

1. Monitoring workstation performance (load monitoring)
2. Exchanging this information between workstations (synchronization)
3. Calculating new distributions and making the work movement decision

(rebalancing criteria)
4. Actual data movement (job migration)

3.1 Balancing Strategies

There are three major parameters which usually define the strategy a specific
load balancing algorithm will employ. These three parameters answer three
important questions: i) who makes the load balancing decision, ii) what
information is used to make the load balancing decision, and iii) where the load
balancing decision is made.

3.1.1 Sender-Initiated vs. Receiver-Initiated Strategies

The question of who makes
the load balancing decision
is answered based on
whether a sender-initiated or
receiver-initiated policy is
employed. In sender-
initiated policies, congested
nodes attempt to move work
to lightly-loaded nodes. In
receiver-initiated policies,
lightly-loaded nodes look for
heavily-loaded nodes from
which work may be received
[DAND97b].

Figure 1 shows the relative
performance of a sender-
initiated and receiver-
initiated load balancing Figure 1 – Performance of Sender-Initiated vs.

Receiver-Initiated Strategies [DAND97b]

 6

algorithm on a homogeneous 32-node system. As can be seen, both the sender-
initiated and receiver-initiated policies perform substantially better than a system
which has no load sharing. What we also see is the sender-initiated policy
performing better than the receiver-initiated policy at low to moderate system
loads. [DAND97b] reasons that at these loads, the probability of finding a lightly-
loaded node is higher than that of finding a heavily-loaded node. Similarly, at
high system loads, the receiver-initiated policy performs better since it is much
easier to find a heavily-loaded node. As a result, adaptive policies have been
proposed which behave like sender-initiated policies at low to moderate system
loads, while at high system loads they behave like receiver-initiated policies.

3.1.2 Global vs. Local Strategies

Global or local policies answer the question of what information will be used to
make a load balancing decision [ZAKI96]. In global policies, the load balancer
uses the performance profiles of all available workstations. In local policies
workstations are partitioned into different groups. In a heterogeneous NOW, the
partitioning is usually done such that each group has nearly equal aggregate
computational power [ZAKI96]. The benefit in a local scheme is that
performance profile information is only exchanged within the group.

The choice of a global or local policy depends on the behaviour an application
will exhibit. For global schemes, balanced load convergence is faster compared
to a local scheme since all workstations are considered at the same time.
However, this requires additional communication and synchronization between
the various workstations; the local schemes minimize this extra overhead. But
the reduced synchronization between workstations is also a downfall of the local
schemes if the various groups exhibit major differences in performance.
[ZAKI96] notes that if one group has processors with poor performance (high
load), and another group has very fast processors (little or no load), the latter will
finish quite early while the former group is overloaded.

3.1.3 Centralized vs. Distributed Strategies

A load balancer is categorized as either centralized or distributed, both of which
define where load balancing decisions are made. In a centralized scheme, the
load balancer is located on one master workstation node and all decisions are
made there. In a distributed scheme, the load balancer is replicated on all
workstations.

Once again, there are tradeoffs associated with choosing one location scheme
over the other. For centralized schemes, the reliance on one central point of
balancing control could limit future scalability. Additionally, the central scheme
also requires an “all-to-one” exchange of profile information from workstations to
the balancer as well as a “one-to-all” exchange of distribution instructions from
the balancer to the workstations. The distributed scheme helps solve the

 7

scalability problems, but at the expense of an “all-to-all” broadcast of profile
information between workstations. However, the distributed scheme avoids the
“one-to-all” distribution exchange since the distribution decisions are made on
each workstation.

Figure 2 shows the performance of four different matrix multiplication algorithms
on 4 and 16 processors respectively. All algorithms were receiver-initiated while
the other two parameters were adjusted, resulting in the four different algorithms
consisting of a Global Centralized Algorithm (GCDLB), Global Distributed
Algorithm (GDDLB), Local Centralized Algorithm (LCDLB), and a Local
Distributed Algorithm (LDDLB). For the 4 processor situation, the global
schemes perform significantly better than the local schemes, as would be
expected due to the faster convergence. However, with 16 processors, the
differences are not as pronounced since we are seeing the benefits of the
reduced communication costs associated with the local schemes.

3.2 Load Monitoring

In order to make optimal balancing and work distribution decisions, a load
balancer needs to take some or all of the following information into consideration
[ALBA96]:

- available capacity on each node (CPU, memory, disk space)
- current load of each node
- required capacity for each task
- network connectivity and capacity
- communication pattern for each task (if applicable)

Figure 2 – Matrix Multiplication on 4 and 16 processors [ZAKI96]

 8

[DAND97b] notes that the choice of load index to use when measuring the
performance of a workstation has a considerable effect on the performance of
the load balancer as a whole.

As with choosing a load balancing strategy, the choice of a load index largely
depends on an application’s requirements. A commonly used load index in many
algorithms is the difference between the time a workstation starts a particular
task and ends that same task (ie. computation time). This effectively allows a
load balancer to compare the time each processor is spending on various tasks.
Thus the idea behind the use of this load index is to have all workstations
complete their tasks at roughly the same time. If this can be achieved, the VPM
will be balanced in its tasks. However, this particular load index doesn’t take
network communication time into consideration. For equal sized tasks this isn’t a
major concern, but for loop scheduling algorithms that may adjust the granularity
of the tasks that get allocated to the various workstations, this becomes an
important consideration.

Thus, in order to take communication time into consideration, some algorithms
prefer to use a response time for each workstation and compare it to an average
response time for all workstations. In other words, let Ttotali represent the total
time it takes for a slave machine i to receive its task, perform the computation,
and return the results. This value is then used to compute an average Ttotalavg
across all workstations. Thus if a particular workstation has a Ttotali value below
the average Ttotalavg, then this information can be used to possibly reduce the
amount of work that is sent to workstation i. Similarly, if workstation i has a
Ttotali value above the Ttotalavg, then work should potentially be reduced for this
particular slave. The downfall to this approach is that it assumes network load is
relatively constant, which is not true. Networks tend to experience bursts of
activity, which could affect the timings taken by the balancer [DAND97b].

3.3 Rebalancing Criteria

There are two major issues that need to be considered before a decision can be
made regarding attempting to balance the load:

1. Moving a task to a workstation will increase its load index. To avoid the
oscillation of movement, a load balancer must be sure that the movement
of a task from one workstation to another does not make the other
workstation have a larger load index than that of the workstation on which
the task presently resides.

2. The measure of success of dynamic load balancing is the net reduction of
execution time achieved by applying the load balancing algorithm. Thus,
the load balancer needs to make sure that the potential performance gain
associated with moving a task from one workstation to another is more
than the cost of performing an actual job migration.

 9

3.4 Checkpointing and Job Migration

When the owner of a workstation claims control of his/her node in the network,
migrating the job to another workstation is desirable to simply restarting it on
another workstation [DAND97b]. This implies that the state of a task should be
captured, after which it is started on a target machine and initialized with the
captured state. Correct migration is difficult since the interactions of the task with
its environment need to be taken into account [ALBA96]. Issues such as dealing
with open files, handling communications with other tasks, and checkpointing
overhead all need to be taken into consideration by a job migration system.
From the perspective of a load balancer, migration is an important issue since
the balancer needs to consider the overhead associated with job migration in
order to measure the potential cost when making a balancing decision (see
Section 3.3 regarding Rebalancing Criteria).

The full details of checkpointing and job migration are an entire topic by
themselves, so they will not be discussed here. However, it is sufficient to note
that a load balancer can make use of a job migration and checkpointing facility as
long as migration costs can be computed for a specific algorithm. It is also
worthwhile to mention that a migration system is not a requirement in a load
balancer, since some studies have shown that migration doesn’t yield any
significant performance benefits due to the extra checkpointing and state-
capturing overhead [DAND97b].

 10

4 An Example Load Balancing Algorithm

Most load balancing algorithms are designed based on the performance
requirements of some specific application domain. For example, applications
that exhibit lengthy parallel jobs usually benefit in the presence of a job migration
system. However, applications with shorter tasks usually don’t warrant the
expense of job migration and thus are better handled with clever loop scheduling
algorithms where the task granularity changes dynamically, as defined in
[DAND97a]. As a result, only one algorithm will be described here in order to
provide an overview of the various issues that a typical algorithm must take into
consideration. However, all algorithms closely follow the four basic load-
balancing steps outlined at the beginning of Section 3.

4.1 Single Program Multiple Data Computation Model

The Single Program Multiple Data (SPMD) paradigm implies that all the
workstations run the same code, but operate on different sets of data. The
motivation for using SPMD programs is that they can be designed and
implemented easily, and they can be applied to a wide range of applications such
as numerical optimization problems and solving coupled partial differential
equations [LEE95].

The SPMD computation model is depicted in Figure 3. Each task is divided into
operations or iterations. Workstations execute the same operation
asynchronously, using data available in the workstation’s own local memory.
This is followed by a data exchange phase where information can be exchanged
between workstations (if required), after which all workstations wait for
synchronization. Thus each “lock-step” of an SPMD program contains 3 phases:

1. Calculation Phase: each task will do the required computation. There is
no communication between workstations at this point.

2. Data Distribution Phase: each task will distribute the relevant data to other
tasks that need it for the next lock-step.

3. Synchronization Phase: this phase ensures that all tasks have completed
the same lock-step. Otherwise there will be problems with tasks using the
wrong data.

 11

If an SPMD program were to be executed on a homogeneous multiprocessor
system, the workload would be balanced for the entire computation (assuming
that all tasks were initially evenly distributed). However, in a NOW, there are
various other factors that can affect the load and thus contribute to load
imbalances.

Thus, within the SPMD paradigm in a VPM, we would like to reduce the
execution time of the program by dynamically shifting/migrating tasks from one
workstation to another at the end of each lock-step, if required. There are 2
things that need to be considered:

1. determine if there is a need to rebalance the load
2. find the best distribution of tasks

4.2 SPMD Load Balancer

[LEE95] has developed a global, centralized, sender-initiated load balancing
algorithm for large, computation-heavy SPMD programs using the following
parameters:

Tcomputei – the interval between the time at which the first task on workstation i
starts execution and the time at which the last task on the same workstation
completes the computation and waits for the synchronization. This value is thus
the dynamic workload index for the algorithm, since there is a direct relation
between Tcomputei and a workstation’s load.

Assuming a program can be decomposed into N tasks and there are P
workstations, then we have N = ? ni (for i = 1 to P). Thus ni is the number of
tasks on workstation i.

Figure 3 – SPMD Computation
Model [LEE95]

 12

Ttaski – the average computation time for each task on a workstation, defined
as:

Ttaski = Tcomputei / ni (equation 1)

Thigh – the maximum of Tcompute over all workstations, defined as:

Thigh = max { Tcomputei } (1 <= i <= P)

Tlow – the minimum of Tcompute over all workstations, defined as:

Tlow = min { Tcomputei } (1 <= i <= P)

A common approach taken for dynamic load balancing on a NOW is to predict
future performance based on past information [ZAKI96]. In the SPMD algorithm,
Ttask can be used to update Tcompute. Thus if m tasks are moved to
workstation i, we can solve equation1 to give us an estimation of Tcomputei:

Ttaski x (ni + m)

The estimation is based on the current workload of the workstation, and it is valid
because all tasks in an SPMD program are executing the same code. Tcompute
will be recalculated after each task reallocation, with Thigh and Tlow updated
accordingly.

4.3 Meeting the Rebalancing Criteria

Therefore, in order to balance the load, tasks from workstations that have a
longer Tcompute will be moved to the workstations with a shorter Tcompute.
However, the algorithm must also take into account the rebalancing criteria as
discussed in Section 3.3.

For the first rebalancing criteria, assume that we have a workstation k that has
the current highest Tcompute. Further assume that L represents the number of
lock steps remaining, and mi represents the number of tasks workstation i
transmits or receives. Therefore, in order to guarantee that moving a task from
workstation k to a new workstation doesn’t cause the new workstation’s
Tcompute to be greater than k’s, we check the following condition:

Ttaskk x nk > min {Ttaski x (ni + 1)} (1 <= i <= P, i != k)
If this is true, then moving one task from workstation k to another workstation will
not cause the oscillating effect that was mentioned in Section 3.3.

For the second rebalancing criteria (where we need to verify that attempting to
balance the load provides some performance gain), we can compute the
following:
OldThigh – represents the previous Thigh value before the current load
balancing decision
NewThigh – represents the new Thigh value that is computed after meeting
criteria 1 (which is guaranteed to be lower than OldThigh)

 13

Therefore the gain associated with performing load balancing would be:
Gain = (OldThigh – NewThigh) X L

Assuming that our load balancer knows Toverhead, the cost of performing job
migration of the SPMD tasks, we can now check criteria 2 using the following:

Gain >= Toverhead x max {mi} (1 <= i <= P)

If this is true, then we can conclude that it is worthwhile to perform the load
balancing and job migration.

4.4 Iterative Algorithm

The final iterative algorithm, as outlined by [LEE95], can be summarized as
follows:

OldThigh = max {Tcomputei} (1 <= i <= P)
WHILE criteria 1 and 2 are TRUE DO

FOR i = 1 to P
Tcompute’ = (ni + 1) x Ttaski

ENDFOR
move a task from workstation with Thigh to the one with the smallest Tcompute’
Update Tcompute of the workstations involved in task migration
NewThigh = max {Tcomputei} (1 <= i <= P)

ENDWHILE

Each iteration of the while loop attempts to move one task from the most heavily
loaded workstation to the most lightly loaded node, as long as the rebalancing
criteria are being met. After some movement, the load monitoring variables are
recomputed and the while loop repeats. This continues until the algorithm
detects that there are no more tasks that can be redistributed without degrading
performance. In other words, the while loop iterates until the system is as
balanced as possible given the current timing information.

 14

5 Cluster Management Software and Load Balancing

Cluster Management Software (CMS) is typically installed onto clusters of
workstations in order to manage and schedule applications that run on these
systems. They provide an increased and reliable throughput of user applications
on the systems they manage by performing load balancing, utilizing spare CPU
cycles, providing fault tolerance features, etc [BAKE96].

Typically batch jobs are given to the CMS via text files that specify such things as
the job name, maximum runtime, and desired platform [BAKE96]. A master
scheduling system, which has an overall view of the NOW, is then given this job
information. This is where a load balancing system comes into play.

5.1 LoadLeveler

LoadLeveler is an example of a CMS, which distributes jobs to a cluster of
workstations or to nodes of a multiprocessor machine [BAKE96]. It’s load
balancer is implemented using a global, centralized strategy whereby a Central
Master is responsible for assigning and scheduling jobs to nodes as well as
continuously maintaining state information [DAND97b]. Thus when a job is first
submitted to LoadLeveler, its requirements (such as memory, disk space,
operating system, etc) are compared to all the workstation statistics currently
available to LoadLeveler. Once a suitable node or nodes are located, the job is
dispatched. Additionally, LoadLeveler supports checkpointing and job migration
to facilitate the load balancer as well as allow for fault tolerance. Finally,
LoadLeveler supports a scalable architecture, since as workstations are added to
the cluster these additional resources are automatically added to the pool of
available workstations (transparently to the user).

5.2 Condor

Condor is a public domain CMS which was developed as a research project at
the University of Wisconsin. It uses a combination centralized and distributed
load balancing scheme, whereby each workstation is responsible for scheduling
its own jobs while the actual load distribution is performed at a centralized
controller [DAND97b]. Thus the central controller periodically polls each
workstation and collects state information consisting of a node’s current load as
well as the number of jobs in the node’s queue. This information is used to
compute a workload index at the central controller, which is then passed along to
each workstation in order to perform its own local job scheduling. Additionally,
Condor supports checkpointing, whereby a disk image of an active process is
stored on the workstation in order to facilitate both fault tolerance and process
migration [COND00].

 15

6 Conclusion

Load balancing is an important issue in a virtual parallel machine built using a
low-cost network of workstations. The most difficult aspect of load balancing in a
network of workstations involves deciding on which algorithm to use. Hundreds
of various algorithms have been proposed, and each one has its own specific
motivations and design decisions that result in trade-offs that aren’t always suited
to every imaginable task.

This report described many of the design issues that are commonly considered
when deciding on a load balancing algorithm (such as global/local,
centralized/distributed, etc.), as well as the tradeoffs associated with the various
parameters and strategies. Additionally, this report outlined the details of an
algorithm targeted towards SPMD style programs in order to present a concrete
example of the details associated with an actual load balancing implementation.
Finally, the load balancing features for two cluster management software
packages (LoadLeveler and Condor) were described briefly.

 16

References

[ALBA96] Van Albada, G.D., Clinckemaillie, J. Dynamite-blasting Obstacles to Parallel Cluster

Computing, Technical Report, Department of Computer Science, University of
Amsterdam, The Netherlands, 1996.

[BAKE96] Baker, M., Fox, G., Yau, H. “Review of Cluster Management Software”, NHSC
Review , 1996 Volume, First Issue, July 1996.

[COND00] Condor Homepage (http://www.cs.wisc.edu/condor)
[DAND97a] Dandamudi, S., Piotrowski, A. “A Comparative Study of Load Sharing on

Networks of Workstations”, Proceedings of the International Conference on Parallel and
Distributed Computing Systems, New Orleans, October 1997.

[DAND97b] Dandamudi, S. Sensitivity Evaluation of Dynamic Load Sharing in Distributed Systems,
Technical Report TR 97-12, Carleton University, Ottawa, Canada.

[LEE95] Lee, B. Dynamic Load Balancing in a Message Passing Virtual Parallel Machine.
Technical Report, Division of Computer Engineering, School of Applied Science,
Nanyang Technological University, Singapore, 1995.

[OVER96] Overeinder, B.J., Sloot, P.M.A. “A Dynamic Load Balancing System for Parallel
Cluster Computing”, Future Generation Computer Systems, 12, pp. 101-105, May
1996.

[SIEG94] Siegell, B., Steenkiste, P. “Automatic Generation of Parallel Programs with
Dynamic Load Balancing”. IEEE Symposium on High Performance Distributed
Computing, August 1994.

[ZAKI96] Zaki, M., Li, W., Parthasarathy, S. “Customized Dynamic Load Balancing for a
Network of Workstations”. Proceedings of HPDC ’96, 1996.

