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Abstract—This paper describes how to accelerate a real-world 
face detection and tracking system by taking advantage of the 
multiple processing cores that are present in most modern 
CPUs. This work makes three key contributions. The first is 
the presentation of a highly optimized serial face detection and 
tracking algorithm that uses motion estimation and local 
search windows to achieve fast processing rates. The second is 
redefining the face detection process based on a set of 
independent face scales that can be processed in parallel on 
separate CPU cores while also achieving a target processing 
rate. The third contribution is demonstrating how multiple 
cores can be used to accelerate the face tracking process which 
provides significant speed boosts when tracking a large 
number of faces simultaneously. Used in a real-world 
application, the parallel face detector and tracker yields a 50-
70% speed boost over the serial version when tested on a 
commodity multi-core CPU. 

Keywords - Face Detection; Face Tracking; Parallel 
Processing; Optimization; Acceleration; Multi-core; Multi-
threading. 

I. INTRODUCTION 
Real-time face detection systems that can find and track 

multiple faces simultaneously have historically been known 
to require significant CPU resources. Nevertheless, with the 
advent of low-cost, high-performance processors, we now 
see face detection systems in everyday devices and 
applications. For example, most digital cameras now use 
face detection in order to auto-focus on people in the scene. 
Similarly, the latest generation of game consoles use face 
detection to allow hands-free user input or in-game 
personalization of 3D avatars. Many webcams also come 
bundled with face detection technology that can digitally pan 
and zoom the camera in order to automatically keep the face 
centered for video conferencing applications [3] or to 
improve the production quality of video meetings [15]. This 
recent widespread use of face detection can be attributed to 
the following two key aspects of modern processors: 1) 
higher clock frequencies; and 2) multiple cores in a single 
processor.  

Without making any changes to an algorithm, a higher 
clock frequency will provide an immediate speed boost by 
reducing the time it takes to perform the various steps of the 
face detection pipeline. Multiple cores can also provide a 
speed boost by allowing an operating system to schedule 
different processes to each core. With enough cores, it is 

possible that an entire core could be dedicated to servicing 
the face detection pipeline while the remaining cores focus 
on other tasks. Unfortunately, since face detection is usually 
a more time consuming process compared to many other 
tasks, it is possible that other cores will be starved and left 
idling while the core executing the face detection pipeline is 
maxed out. This issue becomes a bottleneck for real-time 
face detection applications running on consumer level multi-
core processors. In particular, as the number of faces being 
detected increases or the resolution of the image being 
processed goes higher, the performance of face detection 
applications degrades drastically. Various parallel face 
detection systems have been proposed that can run on 
dedicated hardware and perform face detection in real-time 
for high resolution images [1,5,6], but development of face 
detection systems that utilize the potentials of multiple cores 
on consumer level processors has largely been missing. 
Considering that multi-core processors are now standard in 
the latest PCs and mobile devices, we believe that rethinking 
the face detection pipeline to make effective use of these 
cores is a fruitful area for research. 

In this paper, we describe a parallel frontal face detection 
and tracking system that effectively utilizes the multiple 
cores present in most modern consumer level processors. 
This face detection system is integrated into a commercially 
available software application called Intel® AIM View which 
provides audience measurement data for digital signage 
networks (see Figure 1).  

 
Figure 1. Intel® AIM View Architecture. 
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This allows advertisers to gain quantitative information 
about their ad campaigns, such as the number of impressions 
their content receives, how long individuals look at an ad, 
and demographic data such as gender and age. The software 
operates under the assumption that a camera will be placed 
on top of the digital display so that individuals that look at 
the screen will also be relatively front-facing towards the 
camera. Since the software must adhere to privacy 
restrictions that prevent it from storing any images or other 
personally identifiable information, it is imperative that the 
face detection process function in real-time. 

II. BACKGROUND WORK 
Real-time face detection has been a research focus of the 

computer vision community for a number of years. One of 
the first systems that could be used for fast and accurate 
frontal face detection was the EigenFaces work by Turk and 
Pentland [19], which used principal component analysis to 
extract eigenvectors that represent the space of human faces. 
These vectors could subsequently be used to determine if a 
particular part of an image contained a face. Rowley, Baluja, 
and Kanade [17] also demonstrated a system for finding 
upright frontal faces quickly by using neural networks. To 
achieve a significant speed boost, they used two separate 
neural networks where a faster but less accurate network 
would first find promising candidate face regions, and a 
slower more accurate network would then operate on the pre-
screened candidate regions. Schneiderman and Kanade [18] 
developed a face detector that could reliably detect frontal 
faces as well as faces with out-of-plane rotations by using a 
product of histograms. Support Vector Machines (SVMs) 
have also been explored for face detection, where an optimal 
hyperplane is chosen to minimize the classification error of 
unseen faces and non-faces [13].  The work by Viola and 
Jones [20] was one of the first to use an AdaBoost learning 
algorithm combined with a cascade of simple Haar-like 
features [14] in order to create a highly efficient classifier 
that can quickly discard areas of an image that don’t contain 
faces while focusing more processing time on areas that are 
more likely to contain a face. They also introduced the use of 
an integral image which allows each Haar-like feature to be 
computed in constant time [2]. Due to its high detection 
accuracy, low false positive rate, and efficient processing 
speed, the Viola-Jones algorithm has been widely adopted in 
many real-world face detectors and is usually the baseline 
algorithm by which other approaches are now compared 
against.  

From an optimization standpoint, there has been some 
recent work on using specialized hardware to achieve speed 
boosts. For example, FPGAs can help accelerate the Viola-
Jones algorithm by allowing multiple features to be 
computed in parallel [1,16]. Farrugia et al. [5] also used 
FPGAs to accelerate the face detection process, but they 
relied on pipelining convolution operations to achieve a 
speed boost using a neural network based face detector. 
Hefenbrock et al. [6] investigated using Graphical Processing 
Units (GPUs) to accelerate the Viola-Jones algorithm by 
using the GPU to scan multiple windows for faces in 
parallel. 

In short, numerous theoretical frameworks have been 
proposed to efficiently detect and track faces in real-time, but 
most of them have focused on algorithm development for 
single core CPUs. While specialized hardware based 
optimizations have recently been explored for FPGAs and 
GPUs, approaches that can leverage commodity multi-core 
CPUs have been largely missing. Addressing this issue, we 
designed a real-time parallel face detection and tracking 
system that effectively utilizes all the cores present on a 
CPU. 

III. SYSTEM DESIGN 

A. Software Architecture and Serial Vision Pipeline 
AIM View’s real-time face detection and tracking system 

is implemented in C++ and operates under both Windows 
and Linux using Intel or AMD based CPUs. The frontal face 
detection algorithm is based upon the existing Viola-Jones 
implementation in OpenCV [12] which makes use of 
Lienhart et al.’s tree-based cascades [10]. Low level image 
processing operations such as filtering or rescaling are 
performed using Intel’s highly optimized Integrated 
Performance Primitives (IPP) library that takes advantage of 
any supported SIMD instructions on the target processor [7]. 
Parallelization is accomplished through Intel’s Threading 
Building Blocks (TBB) library which enables scalable 
parallel programming using standard ISO C++ code [8].  

The computer vision pipeline for our face detector and 
tracker before parallelization is shown in Figure 2. The pre-
processing stage performs the following tasks on the input 
frame: 

� Compute a three-level image pyramid (full size, half 
size, and quarter size). 

� Convert the full size image to grayscale. 
� Perform pyramidal Lucas Kanade optical flow 

between the current frame and the previous frame 
[11] to create a vector field depicting areas of 
motion. 

� Compute a motion history image based on the half 
size pyramid level [4]. 

� Compute an integral image based on the full size 
grayscale image [2,20]. 

 

 
Figure 2. AIM View computer vision serial pipeline. 
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The crux of the pipeline lies in the tracking and detection 
stages. The face tracker performs a combination of optical 
flow estimation and Viola-Jones face finding in a localized 
search window around faces that were detected or tracked in 
the previous frame. The face detector is used to find new 
faces that were not previously being tracked, and it also uses 
the Viola-Jones algorithm. 

The process to detect faces involves scanning all possible 
sub-windows of a video frame at a range of target face 
scales, and running the Viola-Jones classifier cascade on 
each of these sub-windows to estimate the likelihood of a 
face. AIM View calls the face scanning routine for different 
face scales sequentially based on the range of distances at 
which the system is configured to function. In a typical AIM 
View installation scenario, the faces to be tracked could 
appear anywhere from roughly 2 feet to 25 feet from the 
camera. Knowing these distance constraints allows us to 
internally define the largest face size at the closest desired 
distance (max_size) and the smallest face size at the furthest 
desired distance (min_size) depending on the resolution of 
each video frame and the field of view of the camera. To 
iterate through the face scales, we also define an increment 
factor (inc). This allows us to compute the total number of 
face scales (num_scales) as follows: 
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Since the Viola-Jones algorithm is invariant to minor 

position and scale changes, there will often be a set of 
overlapping faces being detected around the vicinity of an 
actual face. These overlapping results can be averaged 
together to determine a final valid face location. While the 
Viola-Jones algorithm is quite fast, applying the cascade to 
every possible sub-window is still computationally 
expensive and requires significant CPU resources, 
particularly for HD quality video feeds. By taking advantage 
of the minor position and scale invariance of the Viola-Jones 
classifier, we can achieve a significant speed boost by 
stepping over pixels during the scanning process. We use a 
pixel step of ������ ���
����

 �	������
�����
����
� � , 
where face_size is the target face scale and 
classifier_face_size is the size at which the Viola-Jones 
classifier cascade was trained. In our current implementation, 
classifier_face_size is set to 20 and inc is set to 1.2. These 
values provide a good balance between speed and accuracy.  

We also make use of two additional optimizations which 
help to speed up the face detection process. The first is using 
the motion history image computed during pre-processing in 
order to detect regions of motion. The classifier cascade is 
then only applied to regions which contain a minimum 
amount of motion in the motion history image. We have 
empirically found that a threshold of 10% motion works 
well. The assumption being made is that areas with little or 
no motion over the past few frames have a low likelihood of 
containing a new face and don’t require further processing, 
which prevents the face detector from wasting CPU cycles 
on these areas. The pseudo code for the face scanning 
process is shown in Figure 3.  

 
Figure 3. Pseudo code for face scanning routine with 

motion check. 
 
The second optimization involves introducing a timeout 
during the face detection process. In busy real-world 
environments, there is often a significant amount of motion 
which would normally result in running the face classifier at 
all locations of the video frame for all potential face scales. 
This has the potential to drop processing rates to a level 
where tracking accuracy starts to suffer due to lost frames. 
Therefore, in order to guarantee a minimum processing rate 
for tracking purposes, we limit the amount of time that is 
spent on detecting new faces. We currently set this limit to 
���� ���
��� !"�  milliseconds to make sure that the face 
detection processing rate is close to the camera frame rate. 
The time limit expiration is checked after scanning of each 
face scale, which allows us to defer the scanning of the 
remaining face scales in subsequent frames. This effectively 
is a greedy postponement technique in which sequential 
tasks leftover from one frame will be completed first in the 
following frame. The pseudo code for the face detection 
postponement is shown in Figure 4. 

Once faces have been detected, they are placed into an 
active face list so that they can be locally tracked in 
subsequent frames. For each face i in the active face list, the 
tracking process at video frame t involves averaging the 
optical flow vectors (computed during the pre-processing 
phase) within each face rectangle from frame t-1 and using 
the average vector to predict an approximate position for 
each face i at frame t.      

// image: the current grayscale frame 
// classifier_face_size: size at which classifier was trained (20) 
 
scanForFaces(face_size) 
{ 

p = max(2,face_size / 
classifier_face_size); 

 
for x from 0 to image.width-face_size 
step by p 

   { 
for y from 0 to image.height-
face_size step by p 

      { 
         if(isMotion(x,y,face_size)) 
         { 
            if(runCascade(x,y,face_size)) 
            { 
               store face (x,y,face_size) 
            } 
         } 
      } 
   } 
 
   average any overlapping faces 
 
   return detected face set 
} 
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Figure 4. Pseudo code for postponement of serial face 
detection phase. 

 
The predicted face position is then refined by performing 

a localized Viola-Jones face detection in a search window of 
���
����
 # $
 % 
���
����
 # $  centered on the predicted 
location. For example, a tracked face of 16x16 pixels would 
result in a search window of size 48x48, and we would 
search for all 16x16 faces inside of this window. All 
overlapping faces in the search window are then averaged 
together to determine a set of candidate faces, and the 
candidate face closest to the predicted location is chosen as 
the updated face location. If no faces are found in the search 
window, tracking is re-attempted for up to 2 seconds in 
subsequent frames before the face is permanently removed 
from the active list. This allows tracking to recover if 
individuals temporarily turn away from the camera. Locally 
tracking faces in this manner allows the face detector to 
focus on finding only new faces, which enables the low 
motion optimization and greedy postponement timeout 
described earlier. This reduces overall processing times per 
frame. 

The post-processing step involves merging any similar-
sized overlapping faces that can occur when the face detector 
finds a new face in the same position as a tracked face. Post-
processing also includes any required cleanup steps such as 
releasing temporary buffers.  

B. Finding Opportunities for Parallelization 
A typical parallelization of a system on a multi-core CPU 

involves three steps: (1) identifying CPU intensive tasks; (2) 
modifying the algorithm to partition a CPU intensive task 
into chunks; and (3) distributing the execution of task chunks 
across different cores. Partitioning a task into chunks has 
some resource overhead depending on the number of chunks 
a task is divided into; the higher the number of chunks, the 
higher the resource overhead.   

 
Figure 5. A typical plot of task time performance as a 

function of chunk size [8]. 
 
Therefore, one of the primary goals of an effective 
parallelization is to lower the Relative Overhead Ratio 
formulated as:  
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The version of Intel TBB used in our implementation 
requires each chunk processing time to be greater than 
100,000 clock cycles for the parallelization to be effective. 
Figure 5 shows a logarithmic plot of task time performance 
as a function of chunk size [8]. The measured task is 
evaluation of a floating point expression (���� � >��� # � ) 
over one million indices on a processor with eight hardware 
threads, and therefore, a task chunk is a set of indices 
assigned to a core for processing. This plot is similar to a 
‘Bathtub curve’.  At the leftmost point on the curve, with the 
chunk size of just one, the relative overhead ratio is high. As 
the task chunk size increases, the chunk processing time also 
increases, subsequently lowering the relative overhead ratio. 
However, for a given task, as chunk size increases, the 
number of chunks decreases. The rising edge on the right 
indicates the extreme case when the number of chunks is less 
than the number of cores available, resulting in an under-
utilization of CPU cores. The flat section of the curve shows 
the chunk size range with the most effective parallelization.   

In order to parallelize the face detection and tracking 
system in AIM View, we first profiled the software using 
Intel VTune [9] which provides us with an analysis of the 
time-consuming hotspots in our code. In the serial 
implementation of the software, a single scan of a frame to 
detect faces at a given scale using Viola-Jones based 
classification took less than 200,000 cycles even at HD 
resolutions (1920x1080). This was not surprising since a 
Viola-Jones based classifier performs only a constant 
number of integral image operations per comparison. This 
aspect, however, indicated that partitioning of a single scan 
of the image will result in a high relative overhead ratio. 

Further analysis indicated that the bottleneck was caused 
in two areas: 1) repeated calls to the face scanning routine at 
different scales during the detection step of the pipeline; and 
2) repeated calls to the face scanning routine at different face 
locations during the tracking step of the pipeline. 
Furthermore, searching for faces in the neighborhood of an 
existing face also significantly increased the number of calls 
to the face scanning routine. For example, to search faces in 
the neighborhood of 16x16 size face, the system will create a 
48x48 pixel neighborhood rectangular region around the face  
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)// LastScannedFaceSize: A global denoting the last scan size 

// num_scales: the number of face scales 
// inc: the scale increment (1.2) 
// min_size, max_size: min/max face sizes 
 
face_size = LastScannedFaceSize; 
total_scales_scanned = 0; 
 
while(total_scales_scanned<num_scales && 
!timeoutElapsed()) 
{ 
   scanForFaces(face_size); 
 
   total_scales_scanned++; 
    
   face_size = face_size * inc; 
    
   if(face_size > max_size) 
      face_size = min_size; 
} 
 
LastScannedFaceSize = face_size; 
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Figure 6. AIM View computer vision parallel pipeline. 

 
center as described earlier. An exhaustive search in this 
neighborhood with a pixel step of 2 pixels would require 256 
calls to the face scanning routine. Since detection of faces at 
different scales and their tracking were observed to be the 
two most expensive stages, it was determined that these were 
the most appropriate areas of code to parallelize. Figure 6 
shows a schematic diagram of the high level parallelization 
scheme. 

C. Parallelizing Face Detection 
AIM View calls the face scanning routine for different 

face scales sequentially, but all calls are independent of one 
another. This property makes it possible to partition the set 
of face scales into chunks and run them in parallel based on 
the number of cores available on the CPU. Therefore, each 
core receives approximately �������	
� � �����,�
� 
different scales at which the face detection procedure is 
called.  A partitioning strategy based on the number of cores 
was selected to make sure all the cores are utilized.  

This linear distribution of scales over cores assumes that 
the computational complexity of the underlying face 
detection algorithm is independent of scale, as is the case 
with Viola-Jones. If the complexity were not scale 
independent, the distribution would have to balance the 
computational load by randomly assigning scales to cores, 
mixing face scales evenly to the cores, or assigning weights 
to different scales based on computational load and 
distributing the set of scales to equalize the weights. 

In our serial algorithm discussion we described the 
concept of postponing the face scanning process for different 
face scales to achieve a target processing rate. While 
parallelizing the face detection task helps to reduce overall 
processing times, it is still beneficial to support the concept 
of postponement in our parallel algorithm to avoid 
exhausting the CPU in busy environments.  

 Figure 7. Pseudo code for postponement of parallel face 
detection task chunks. 

 
Using the same time limit of ���� ���
��� !"�  
milliseconds as in our serial algorithm, we can limit how 
long a core is allowed to devote to processing of its chunk of 
face scale scanning tasks for each video frame. If a core is 
not able to finish all the tasks in the chunk within the time 
limit, it skips the remainder of the task. The completion of 
the remaining tasks is postponed to the next frame cycle. The 
pseudo code in Figure 7 shows the algorithm for using the 
postponement criterion across different cores. Each core 
executes the pseudo code in parallel making use of two data 
structures: a global task set accessible to all the cores (the 
variable named PostponedTaskSet) and a queue local to a 
core (the variable named TaskQueue ).  

While this approach makes sure that all the tasks are 
completed eventually, the lack of a global optimization can 
lead to reduced accuracy levels. For large sized task chunks, 
a significant number of tasks will be postponed to the next 
frame cycle. Successive postponements that continue for 
several frames can lead to some faces of passers-by being 
ignored. However, in our current real world AIM View 
installations, this issue has not been encountered. 
 

D. Parallelizing Face Tracking 
As described earlier, face tracking in AIM View is 

performed by searching for a new face in the neighborhood 
of an existing face. On most current consumer level 
processors, a single face can be tracked in real-time. 
However, as the number of faces increases, the processing 
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// TaskQueue: A Queue data structure local to the core 
// PostponedTaskSet: A global Set data structure 
 
queue_length = TaskQueue.length; 
i=0; 
While(i<queue_length && !timeoutElapsed()) 
{ 
    task = TaskQueue.start; 
    If (task  PostponedTaskSet) 
    { 
         Perform task; 
         Delete task from TaskQueue; 
    } 
    Else 
    { 
         Move task to TaskQueue end; 
    } 
    i++; 
} 
 
While(!TaskQueue.isEmpty() && 
!timeoutElapsed()) 
{ 
    Perform task; 
    Delete task from TaskQueue; 
} 
Add TaskQueue to PostponedTaskSet; 

294



frame rate tends to fall below the real-time video rate. This 
indicates that face tracking could benefit from parallelization 
across faces. 

The parallelization for tracking is implemented using the 
following two steps. Firstly, the active face list consisting of 
the set of faces to be tracked is partitioned equally into as 
many chunks as there are cores available. Secondly, each 
chunk is assigned to a core and all the faces in a chunk are 
tracked by the same core.  As the number of faces increases, 
the number of faces in each task chunk also increases. This 
in turn increases the chunk processing time and lowers the 
relative overhead ratio.  

Since the time complexity of the face tracking algorithm 
in AIM View is independent of face scale, parallelization is 
achieved by simply distributing faces linearly across cores. 
Different distribution functions can also be selected based on 
the complexity of alternative tracking algorithms such that 
each core finishes the assigned task chunk in approximately 
equal number of clock cycles.  

IV. PERFORMANCE EVALUATION 

A. Experiment Setup 
The performance of parallel and serial versions of AIM 

View was compared along the following two dimensions: 
resolution (640x480, 960x720, and 1440x1080) and number 
of faces (5, 8, 16, and 20). Thus, there were 12 total 
experiment conditions. In order to conduct a controlled 
comparison, we created synthetic videos by controlling both 
the number of faces in the scene and the frame resolution. 
All of the videos were generated at the three target 
resolutions using a frame rate of 30 Hz and each video was 
60 seconds long. For each resolution, 4 videos were 
generated with varying number of faces, totaling to 12 videos 
corresponding to 12 different experimental conditions. In all 
of the videos, faces were continuously oscillating with a 
small amplitude in random directions in order to ensure that 
face tracking would be continuously performed for each of 
the faces. Figure 8 shows two example frames from a video 
with 8 simultaneous faces. 

 
Figure 8. Two frames from a sample video with 8 faces. 

 
The videos were passed as inputs to both the serial and 

parallel versions of the software. For the purposes of this 
experiment, we processed all frames in each video and we 
disabled the postponement timeout for the face detection 
phase in order to measure the worst case complexity of the 
algorithm. CPU clock times (in microseconds) were logged 
for each of the stages in the pipeline (shown in Figure 2 and 
Figure 6). Processing of each video was repeated four times 
to smooth out noise in the log data introduced by varying 

scheduling of threads by the operating system. All of the 
tests were run on an Intel Core i7-2655LE CPU with 4 
logical cores operating at 2.2GHz with 4GB of RAM and a 
32-bit version of Windows Embedded Standard 7. 
Corresponding to each experiment condition, a median CPU 
clock time (in microseconds) was calculated for each stage 
of the pipeline. 

B. Results 
Overall, the parallel version of AIM View was observed 

to be faster than the serial version under all experimental 
conditions. The accuracy of detection and tracking for both 
versions was comparable. 

In Figure 9, median face detection CPU times are plotted 
for two of the resolutions used in the experiments and for 
two face counts (five and twenty faces). The plot shows that 
the parallelization significantly improved the performance of 
the face detection stage. In Figure 10, median face tracking 
CPU times are plotted. Similar to the face detection stage, 
the face tracking stage also gets significant performance 
boost due to parallelization. 

We further analyzed the performance data to understand 
the effect of resolution and number of faces on performance 
gains. For this analysis, we used the percentage improvement 
in CPU times due to parallelization, calculated from serial 
and parallel CPU times: 
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The percentage improvement is an indicator of the 
effectiveness of parallelization in lowering the relative 
overhead ratio; a high percentage improvement indicating a 
low relative overhead ratio and vice-versa. 

In Figure 11, the percentage improvement in face 
detection is plotted against number of faces, separately for 
different resolutions. It can be observed that for a given 
resolution, the percentage improvement shows a downward 
trend as the number of faces goes up. The results indicate 
that the scale based parallelization of face detection is most 
effective for a small number of faces. For large number of 
faces, the gain from parallelization is small compared to the 
total task time.  Similarly, for a given number of faces, as the 
frame resolution increases, the percentage improvement goes 
down, in a similar fashion.  

 

 
Figure 9. Median face detection times in milliseconds for 

5 and 20 faces at 640x480 and 1440x1080 resolution. 
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Figure 12 shows a plot of the percentage improvement in 
face tracking against the number of faces. It can be observed 
that percentage improvement increases for all resolutions as 
the number of faces increases from five to eight. When 
keeping the number of faces constant, the performance 
improvement does not show a clear trend. In general, the 
improvement seems to be most pronounced at a resolution of 
960x720, but further experiments are required to make any 
definitive conclusions. 

C. Discussion 
In our implementation, partitioning of face detection into 

task chunks was based on face scales and was independent of 
number of faces. Since the number of face scales was 
constant across all experiment conditions, the absolute gains 
from parallelization remained approximately the same for 
different face counts. When the number of faces increased, 
this resulted in decreasing percentage improvement as the 
total task completion time increased. 

On the other hand, face tracking parallelization was 
directly dependent on the number of faces. Therefore, as the 
number of faces increased, the relative overhead ratio also 
decreased as expected (compare Figure 5 and Figure 12). 
This resulted in rising percentage improvement. This 
improvement is more pronounced in higher resolution frames 
because of higher task processing times. 

V. CONCLUSIONS 
We have presented a real-world frontal face detection 

and tracking system that has been optimized to make more 
effective use of multi-core CPUs that are now standard in the 
latest generation of PCs, laptops, and smart-phones. By 
analyzing a serial implementation of our system for hotspots, 
we were able to parallelize critical sections of our computer 
vision pipeline and achieve a 50-70% speed improvement 
when simultaneously tracking 20 faces. These results suggest 
that significant performance boosts are possible by 
rethinking many existing computer vision algorithms that 
have traditionally been presented in terms of serial (single 
core) processing. 
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Figure 10. Median face tracking times in milliseconds 

for 5 and 20 faces at 640x480 and 1440x1080 resolution. 
 

 
Figure 11. Face detection percentage time improvement 

vs. number of faces (for different frame resolutions). 
 
 

 
Figure 12. Face tracking percentage time improvement 

vs. number of faces (for different frame resolutions). 
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