
Parallelizing a Face Detection and Tracking System for Multi-Core Processors

Abhishek Ranjan, Shahzad Malik
Intelligent Systems Group (Personal Solutions Division)

Intel Corporation
Toronto, Canada

{ abhishek.ranjan, shahzad.malik } @ intel.com

Abstract—This paper describes how to accelerate a real-world
face detection and tracking system by taking advantage of the
multiple processing cores that are present in most modern
CPUs. This work makes three key contributions. The first is
the presentation of a highly optimized serial face detection and
tracking algorithm that uses motion estimation and local
search windows to achieve fast processing rates. The second is
redefining the face detection process based on a set of
independent face scales that can be processed in parallel on
separate CPU cores while also achieving a target processing
rate. The third contribution is demonstrating how multiple
cores can be used to accelerate the face tracking process which
provides significant speed boosts when tracking a large
number of faces simultaneously. Used in a real-world
application, the parallel face detector and tracker yields a 50-
70% speed boost over the serial version when tested on a
commodity multi-core CPU.

Keywords - Face Detection; Face Tracking; Parallel
Processing; Optimization; Acceleration; Multi-core; Multi-
threading.

I. INTRODUCTION
Real-time face detection systems that can find and track

multiple faces simultaneously have historically been known
to require significant CPU resources. Nevertheless, with the
advent of low-cost, high-performance processors, we now
see face detection systems in everyday devices and
applications. For example, most digital cameras now use
face detection in order to auto-focus on people in the scene.
Similarly, the latest generation of game consoles use face
detection to allow hands-free user input or in-game
personalization of 3D avatars. Many webcams also come
bundled with face detection technology that can digitally pan
and zoom the camera in order to automatically keep the face
centered for video conferencing applications [3] or to
improve the production quality of video meetings [15]. This
recent widespread use of face detection can be attributed to
the following two key aspects of modern processors: 1)
higher clock frequencies; and 2) multiple cores in a single
processor.

Without making any changes to an algorithm, a higher
clock frequency will provide an immediate speed boost by
reducing the time it takes to perform the various steps of the
face detection pipeline. Multiple cores can also provide a
speed boost by allowing an operating system to schedule
different processes to each core. With enough cores, it is

possible that an entire core could be dedicated to servicing
the face detection pipeline while the remaining cores focus
on other tasks. Unfortunately, since face detection is usually
a more time consuming process compared to many other
tasks, it is possible that other cores will be starved and left
idling while the core executing the face detection pipeline is
maxed out. This issue becomes a bottleneck for real-time
face detection applications running on consumer level multi-
core processors. In particular, as the number of faces being
detected increases or the resolution of the image being
processed goes higher, the performance of face detection
applications degrades drastically. Various parallel face
detection systems have been proposed that can run on
dedicated hardware and perform face detection in real-time
for high resolution images [1,5,6], but development of face
detection systems that utilize the potentials of multiple cores
on consumer level processors has largely been missing.
Considering that multi-core processors are now standard in
the latest PCs and mobile devices, we believe that rethinking
the face detection pipeline to make effective use of these
cores is a fruitful area for research.

In this paper, we describe a parallel frontal face detection
and tracking system that effectively utilizes the multiple
cores present in most modern consumer level processors.
This face detection system is integrated into a commercially
available software application called Intel® AIM View which
provides audience measurement data for digital signage
networks (see Figure 1).

Figure 1. Intel® AIM View Architecture.

2012 Ninth Conference on Computer and Robot Vision

978-0-7695-4683-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CRV.2012.45

290

This allows advertisers to gain quantitative information
about their ad campaigns, such as the number of impressions
their content receives, how long individuals look at an ad,
and demographic data such as gender and age. The software
operates under the assumption that a camera will be placed
on top of the digital display so that individuals that look at
the screen will also be relatively front-facing towards the
camera. Since the software must adhere to privacy
restrictions that prevent it from storing any images or other
personally identifiable information, it is imperative that the
face detection process function in real-time.

II. BACKGROUND WORK
Real-time face detection has been a research focus of the

computer vision community for a number of years. One of
the first systems that could be used for fast and accurate
frontal face detection was the EigenFaces work by Turk and
Pentland [19], which used principal component analysis to
extract eigenvectors that represent the space of human faces.
These vectors could subsequently be used to determine if a
particular part of an image contained a face. Rowley, Baluja,
and Kanade [17] also demonstrated a system for finding
upright frontal faces quickly by using neural networks. To
achieve a significant speed boost, they used two separate
neural networks where a faster but less accurate network
would first find promising candidate face regions, and a
slower more accurate network would then operate on the pre-
screened candidate regions. Schneiderman and Kanade [18]
developed a face detector that could reliably detect frontal
faces as well as faces with out-of-plane rotations by using a
product of histograms. Support Vector Machines (SVMs)
have also been explored for face detection, where an optimal
hyperplane is chosen to minimize the classification error of
unseen faces and non-faces [13]. The work by Viola and
Jones [20] was one of the first to use an AdaBoost learning
algorithm combined with a cascade of simple Haar-like
features [14] in order to create a highly efficient classifier
that can quickly discard areas of an image that don’t contain
faces while focusing more processing time on areas that are
more likely to contain a face. They also introduced the use of
an integral image which allows each Haar-like feature to be
computed in constant time [2]. Due to its high detection
accuracy, low false positive rate, and efficient processing
speed, the Viola-Jones algorithm has been widely adopted in
many real-world face detectors and is usually the baseline
algorithm by which other approaches are now compared
against.

From an optimization standpoint, there has been some
recent work on using specialized hardware to achieve speed
boosts. For example, FPGAs can help accelerate the Viola-
Jones algorithm by allowing multiple features to be
computed in parallel [1,16]. Farrugia et al. [5] also used
FPGAs to accelerate the face detection process, but they
relied on pipelining convolution operations to achieve a
speed boost using a neural network based face detector.
Hefenbrock et al. [6] investigated using Graphical Processing
Units (GPUs) to accelerate the Viola-Jones algorithm by
using the GPU to scan multiple windows for faces in
parallel.

In short, numerous theoretical frameworks have been
proposed to efficiently detect and track faces in real-time, but
most of them have focused on algorithm development for
single core CPUs. While specialized hardware based
optimizations have recently been explored for FPGAs and
GPUs, approaches that can leverage commodity multi-core
CPUs have been largely missing. Addressing this issue, we
designed a real-time parallel face detection and tracking
system that effectively utilizes all the cores present on a
CPU.

III. SYSTEM DESIGN

A. Software Architecture and Serial Vision Pipeline
AIM View’s real-time face detection and tracking system

is implemented in C++ and operates under both Windows
and Linux using Intel or AMD based CPUs. The frontal face
detection algorithm is based upon the existing Viola-Jones
implementation in OpenCV [12] which makes use of
Lienhart et al.’s tree-based cascades [10]. Low level image
processing operations such as filtering or rescaling are
performed using Intel’s highly optimized Integrated
Performance Primitives (IPP) library that takes advantage of
any supported SIMD instructions on the target processor [7].
Parallelization is accomplished through Intel’s Threading
Building Blocks (TBB) library which enables scalable
parallel programming using standard ISO C++ code [8].

The computer vision pipeline for our face detector and
tracker before parallelization is shown in Figure 2. The pre-
processing stage performs the following tasks on the input
frame:

� Compute a three-level image pyramid (full size, half
size, and quarter size).

� Convert the full size image to grayscale.
� Perform pyramidal Lucas Kanade optical flow

between the current frame and the previous frame
[11] to create a vector field depicting areas of
motion.

� Compute a motion history image based on the half
size pyramid level [4].

� Compute an integral image based on the full size
grayscale image [2,20].

Figure 2. AIM View computer vision serial pipeline.

Retrieve Video Frame

Pre-Process Video Frame

Track Existing Faces

Detect New Faces

Post-Process Video Frame

291

The crux of the pipeline lies in the tracking and detection
stages. The face tracker performs a combination of optical
flow estimation and Viola-Jones face finding in a localized
search window around faces that were detected or tracked in
the previous frame. The face detector is used to find new
faces that were not previously being tracked, and it also uses
the Viola-Jones algorithm.

The process to detect faces involves scanning all possible
sub-windows of a video frame at a range of target face
scales, and running the Viola-Jones classifier cascade on
each of these sub-windows to estimate the likelihood of a
face. AIM View calls the face scanning routine for different
face scales sequentially based on the range of distances at
which the system is configured to function. In a typical AIM
View installation scenario, the faces to be tracked could
appear anywhere from roughly 2 feet to 25 feet from the
camera. Knowing these distance constraints allows us to
internally define the largest face size at the closest desired
distance (max_size) and the smallest face size at the furthest
desired distance (min_size) depending on the resolution of
each video frame and the field of view of the camera. To
iterate through the face scales, we also define an increment
factor (inc). This allows us to compute the total number of
face scales (num_scales) as follows:

�������	
� � �
���
�������

�������

� ���������

Since the Viola-Jones algorithm is invariant to minor

position and scale changes, there will often be a set of
overlapping faces being detected around the vicinity of an
actual face. These overlapping results can be averaged
together to determine a final valid face location. While the
Viola-Jones algorithm is quite fast, applying the cascade to
every possible sub-window is still computationally
expensive and requires significant CPU resources,
particularly for HD quality video feeds. By taking advantage
of the minor position and scale invariance of the Viola-Jones
classifier, we can achieve a significant speed boost by
stepping over pixels during the scanning process. We use a
pixel step of ������ ���
����

 �	������
�����
����
� � ,
where face_size is the target face scale and
classifier_face_size is the size at which the Viola-Jones
classifier cascade was trained. In our current implementation,
classifier_face_size is set to 20 and inc is set to 1.2. These
values provide a good balance between speed and accuracy.

We also make use of two additional optimizations which
help to speed up the face detection process. The first is using
the motion history image computed during pre-processing in
order to detect regions of motion. The classifier cascade is
then only applied to regions which contain a minimum
amount of motion in the motion history image. We have
empirically found that a threshold of 10% motion works
well. The assumption being made is that areas with little or
no motion over the past few frames have a low likelihood of
containing a new face and don’t require further processing,
which prevents the face detector from wasting CPU cycles
on these areas. The pseudo code for the face scanning
process is shown in Figure 3.

Figure 3. Pseudo code for face scanning routine with

motion check.

The second optimization involves introducing a timeout
during the face detection process. In busy real-world
environments, there is often a significant amount of motion
which would normally result in running the face classifier at
all locations of the video frame for all potential face scales.
This has the potential to drop processing rates to a level
where tracking accuracy starts to suffer due to lost frames.
Therefore, in order to guarantee a minimum processing rate
for tracking purposes, we limit the amount of time that is
spent on detecting new faces. We currently set this limit to
���� ���
��� !"� milliseconds to make sure that the face
detection processing rate is close to the camera frame rate.
The time limit expiration is checked after scanning of each
face scale, which allows us to defer the scanning of the
remaining face scales in subsequent frames. This effectively
is a greedy postponement technique in which sequential
tasks leftover from one frame will be completed first in the
following frame. The pseudo code for the face detection
postponement is shown in Figure 4.

Once faces have been detected, they are placed into an
active face list so that they can be locally tracked in
subsequent frames. For each face i in the active face list, the
tracking process at video frame t involves averaging the
optical flow vectors (computed during the pre-processing
phase) within each face rectangle from frame t-1 and using
the average vector to predict an approximate position for
each face i at frame t.

// image: the current grayscale frame
// classifier_face_size: size at which classifier was trained (20)

scanForFaces(face_size)
{

p = max(2,face_size /
classifier_face_size);

for x from 0 to image.width-face_size
step by p

 {
for y from 0 to image.height-
face_size step by p

 {
 if(isMotion(x,y,face_size))
 {
 if(runCascade(x,y,face_size))
 {
 store face (x,y,face_size)
 }
 }
 }
 }

 average any overlapping faces

 return detected face set
}

292

Figure 4. Pseudo code for postponement of serial face
detection phase.

The predicted face position is then refined by performing

a localized Viola-Jones face detection in a search window of
���
����
 # $
 %
���
����
 # $ centered on the predicted
location. For example, a tracked face of 16x16 pixels would
result in a search window of size 48x48, and we would
search for all 16x16 faces inside of this window. All
overlapping faces in the search window are then averaged
together to determine a set of candidate faces, and the
candidate face closest to the predicted location is chosen as
the updated face location. If no faces are found in the search
window, tracking is re-attempted for up to 2 seconds in
subsequent frames before the face is permanently removed
from the active list. This allows tracking to recover if
individuals temporarily turn away from the camera. Locally
tracking faces in this manner allows the face detector to
focus on finding only new faces, which enables the low
motion optimization and greedy postponement timeout
described earlier. This reduces overall processing times per
frame.

The post-processing step involves merging any similar-
sized overlapping faces that can occur when the face detector
finds a new face in the same position as a tracked face. Post-
processing also includes any required cleanup steps such as
releasing temporary buffers.

B. Finding Opportunities for Parallelization
A typical parallelization of a system on a multi-core CPU

involves three steps: (1) identifying CPU intensive tasks; (2)
modifying the algorithm to partition a CPU intensive task
into chunks; and (3) distributing the execution of task chunks
across different cores. Partitioning a task into chunks has
some resource overhead depending on the number of chunks
a task is divided into; the higher the number of chunks, the
higher the resource overhead.

Figure 5. A typical plot of task time performance as a

function of chunk size [8].

Therefore, one of the primary goals of an effective
parallelization is to lower the Relative Overhead Ratio
formulated as:

&
	�'�(

)(
�*
�+
&�'�,
 �

-./010123134
0156

7893:
;/2<6==134
0156
.

The version of Intel TBB used in our implementation
requires each chunk processing time to be greater than
100,000 clock cycles for the parallelization to be effective.
Figure 5 shows a logarithmic plot of task time performance
as a function of chunk size [8]. The measured task is
evaluation of a floating point expression (���� � >��� # �)
over one million indices on a processor with eight hardware
threads, and therefore, a task chunk is a set of indices
assigned to a core for processing. This plot is similar to a
‘Bathtub curve’. At the leftmost point on the curve, with the
chunk size of just one, the relative overhead ratio is high. As
the task chunk size increases, the chunk processing time also
increases, subsequently lowering the relative overhead ratio.
However, for a given task, as chunk size increases, the
number of chunks decreases. The rising edge on the right
indicates the extreme case when the number of chunks is less
than the number of cores available, resulting in an under-
utilization of CPU cores. The flat section of the curve shows
the chunk size range with the most effective parallelization.

In order to parallelize the face detection and tracking
system in AIM View, we first profiled the software using
Intel VTune [9] which provides us with an analysis of the
time-consuming hotspots in our code. In the serial
implementation of the software, a single scan of a frame to
detect faces at a given scale using Viola-Jones based
classification took less than 200,000 cycles even at HD
resolutions (1920x1080). This was not surprising since a
Viola-Jones based classifier performs only a constant
number of integral image operations per comparison. This
aspect, however, indicated that partitioning of a single scan
of the image will result in a high relative overhead ratio.

Further analysis indicated that the bottleneck was caused
in two areas: 1) repeated calls to the face scanning routine at
different scales during the detection step of the pipeline; and
2) repeated calls to the face scanning routine at different face
locations during the tracking step of the pipeline.
Furthermore, searching for faces in the neighborhood of an
existing face also significantly increased the number of calls
to the face scanning routine. For example, to search faces in
the neighborhood of 16x16 size face, the system will create a
48x48 pixel neighborhood rectangular region around the face

Chunk Size

Ti
m

e
(m

ill
is

ec
on

ds
)// LastScannedFaceSize: A global denoting the last scan size

// num_scales: the number of face scales
// inc: the scale increment (1.2)
// min_size, max_size: min/max face sizes

face_size = LastScannedFaceSize;
total_scales_scanned = 0;

while(total_scales_scanned<num_scales &&
!timeoutElapsed())
{
 scanForFaces(face_size);

 total_scales_scanned++;

 face_size = face_size * inc;

 if(face_size > max_size)
 face_size = min_size;
}

LastScannedFaceSize = face_size;

293

Figure 6. AIM View computer vision parallel pipeline.

center as described earlier. An exhaustive search in this
neighborhood with a pixel step of 2 pixels would require 256
calls to the face scanning routine. Since detection of faces at
different scales and their tracking were observed to be the
two most expensive stages, it was determined that these were
the most appropriate areas of code to parallelize. Figure 6
shows a schematic diagram of the high level parallelization
scheme.

C. Parallelizing Face Detection
AIM View calls the face scanning routine for different

face scales sequentially, but all calls are independent of one
another. This property makes it possible to partition the set
of face scales into chunks and run them in parallel based on
the number of cores available on the CPU. Therefore, each
core receives approximately �������	
� � �����,�
�
different scales at which the face detection procedure is
called. A partitioning strategy based on the number of cores
was selected to make sure all the cores are utilized.

This linear distribution of scales over cores assumes that
the computational complexity of the underlying face
detection algorithm is independent of scale, as is the case
with Viola-Jones. If the complexity were not scale
independent, the distribution would have to balance the
computational load by randomly assigning scales to cores,
mixing face scales evenly to the cores, or assigning weights
to different scales based on computational load and
distributing the set of scales to equalize the weights.

In our serial algorithm discussion we described the
concept of postponing the face scanning process for different
face scales to achieve a target processing rate. While
parallelizing the face detection task helps to reduce overall
processing times, it is still beneficial to support the concept
of postponement in our parallel algorithm to avoid
exhausting the CPU in busy environments.

 Figure 7. Pseudo code for postponement of parallel face
detection task chunks.

Using the same time limit of ���� ���
��� !"�
milliseconds as in our serial algorithm, we can limit how
long a core is allowed to devote to processing of its chunk of
face scale scanning tasks for each video frame. If a core is
not able to finish all the tasks in the chunk within the time
limit, it skips the remainder of the task. The completion of
the remaining tasks is postponed to the next frame cycle. The
pseudo code in Figure 7 shows the algorithm for using the
postponement criterion across different cores. Each core
executes the pseudo code in parallel making use of two data
structures: a global task set accessible to all the cores (the
variable named PostponedTaskSet) and a queue local to a
core (the variable named TaskQueue).

While this approach makes sure that all the tasks are
completed eventually, the lack of a global optimization can
lead to reduced accuracy levels. For large sized task chunks,
a significant number of tasks will be postponed to the next
frame cycle. Successive postponements that continue for
several frames can lead to some faces of passers-by being
ignored. However, in our current real world AIM View
installations, this issue has not been encountered.

D. Parallelizing Face Tracking
As described earlier, face tracking in AIM View is

performed by searching for a new face in the neighborhood
of an existing face. On most current consumer level
processors, a single face can be tracked in real-time.
However, as the number of faces increases, the processing

Track Existing Faces

Retrieve Video Frame

Pre-Process Video Frame

Partition Face Tracking

Parallel Face
Tracking
Core 1

Parallel Face
Tracking
Core 2

Parallel Face
Tracking
Core N

…

Detect New Faces

Partition Face Detection

Parallel Face
Detection

Core 1

Parallel Face
Detection

Core 2

Parallel Face
Detection

Core N
…

Post-Process Video Frame

// TaskQueue: A Queue data structure local to the core
// PostponedTaskSet: A global Set data structure

queue_length = TaskQueue.length;
i=0;
While(i<queue_length && !timeoutElapsed())
{
 task = TaskQueue.start;
 If (task PostponedTaskSet)
 {
 Perform task;
 Delete task from TaskQueue;
 }
 Else
 {
 Move task to TaskQueue end;
 }
 i++;
}

While(!TaskQueue.isEmpty() &&
!timeoutElapsed())
{
 Perform task;
 Delete task from TaskQueue;
}
Add TaskQueue to PostponedTaskSet;

294

frame rate tends to fall below the real-time video rate. This
indicates that face tracking could benefit from parallelization
across faces.

The parallelization for tracking is implemented using the
following two steps. Firstly, the active face list consisting of
the set of faces to be tracked is partitioned equally into as
many chunks as there are cores available. Secondly, each
chunk is assigned to a core and all the faces in a chunk are
tracked by the same core. As the number of faces increases,
the number of faces in each task chunk also increases. This
in turn increases the chunk processing time and lowers the
relative overhead ratio.

Since the time complexity of the face tracking algorithm
in AIM View is independent of face scale, parallelization is
achieved by simply distributing faces linearly across cores.
Different distribution functions can also be selected based on
the complexity of alternative tracking algorithms such that
each core finishes the assigned task chunk in approximately
equal number of clock cycles.

IV. PERFORMANCE EVALUATION

A. Experiment Setup
The performance of parallel and serial versions of AIM

View was compared along the following two dimensions:
resolution (640x480, 960x720, and 1440x1080) and number
of faces (5, 8, 16, and 20). Thus, there were 12 total
experiment conditions. In order to conduct a controlled
comparison, we created synthetic videos by controlling both
the number of faces in the scene and the frame resolution.
All of the videos were generated at the three target
resolutions using a frame rate of 30 Hz and each video was
60 seconds long. For each resolution, 4 videos were
generated with varying number of faces, totaling to 12 videos
corresponding to 12 different experimental conditions. In all
of the videos, faces were continuously oscillating with a
small amplitude in random directions in order to ensure that
face tracking would be continuously performed for each of
the faces. Figure 8 shows two example frames from a video
with 8 simultaneous faces.

Figure 8. Two frames from a sample video with 8 faces.

The videos were passed as inputs to both the serial and

parallel versions of the software. For the purposes of this
experiment, we processed all frames in each video and we
disabled the postponement timeout for the face detection
phase in order to measure the worst case complexity of the
algorithm. CPU clock times (in microseconds) were logged
for each of the stages in the pipeline (shown in Figure 2 and
Figure 6). Processing of each video was repeated four times
to smooth out noise in the log data introduced by varying

scheduling of threads by the operating system. All of the
tests were run on an Intel Core i7-2655LE CPU with 4
logical cores operating at 2.2GHz with 4GB of RAM and a
32-bit version of Windows Embedded Standard 7.
Corresponding to each experiment condition, a median CPU
clock time (in microseconds) was calculated for each stage
of the pipeline.

B. Results
Overall, the parallel version of AIM View was observed

to be faster than the serial version under all experimental
conditions. The accuracy of detection and tracking for both
versions was comparable.

In Figure 9, median face detection CPU times are plotted
for two of the resolutions used in the experiments and for
two face counts (five and twenty faces). The plot shows that
the parallelization significantly improved the performance of
the face detection stage. In Figure 10, median face tracking
CPU times are plotted. Similar to the face detection stage,
the face tracking stage also gets significant performance
boost due to parallelization.

We further analyzed the performance data to understand
the effect of resolution and number of faces on performance
gains. For this analysis, we used the percentage improvement
in CPU times due to parallelization, calculated from serial
and parallel CPU times:

?
��@�,(
�
�' �
�'��
=6/1.A
B
'��
;./.AA6A� # ���

'��
=6/1.A

The percentage improvement is an indicator of the
effectiveness of parallelization in lowering the relative
overhead ratio; a high percentage improvement indicating a
low relative overhead ratio and vice-versa.

In Figure 11, the percentage improvement in face
detection is plotted against number of faces, separately for
different resolutions. It can be observed that for a given
resolution, the percentage improvement shows a downward
trend as the number of faces goes up. The results indicate
that the scale based parallelization of face detection is most
effective for a small number of faces. For large number of
faces, the gain from parallelization is small compared to the
total task time. Similarly, for a given number of faces, as the
frame resolution increases, the percentage improvement goes
down, in a similar fashion.

Figure 9. Median face detection times in milliseconds for

5 and 20 faces at 640x480 and 1440x1080 resolution.

0
10
20
30
40
50
60
70
80
90

640x480 1440x1080 640x480 1440x1080

5 faces 20 faces

CP
U

 T
im

e
in

 M
ill

is
ec

on
d

Serial Parallel

295

Figure 12 shows a plot of the percentage improvement in
face tracking against the number of faces. It can be observed
that percentage improvement increases for all resolutions as
the number of faces increases from five to eight. When
keeping the number of faces constant, the performance
improvement does not show a clear trend. In general, the
improvement seems to be most pronounced at a resolution of
960x720, but further experiments are required to make any
definitive conclusions.

C. Discussion
In our implementation, partitioning of face detection into

task chunks was based on face scales and was independent of
number of faces. Since the number of face scales was
constant across all experiment conditions, the absolute gains
from parallelization remained approximately the same for
different face counts. When the number of faces increased,
this resulted in decreasing percentage improvement as the
total task completion time increased.

On the other hand, face tracking parallelization was
directly dependent on the number of faces. Therefore, as the
number of faces increased, the relative overhead ratio also
decreased as expected (compare Figure 5 and Figure 12).
This resulted in rising percentage improvement. This
improvement is more pronounced in higher resolution frames
because of higher task processing times.

V. CONCLUSIONS
We have presented a real-world frontal face detection

and tracking system that has been optimized to make more
effective use of multi-core CPUs that are now standard in the
latest generation of PCs, laptops, and smart-phones. By
analyzing a serial implementation of our system for hotspots,
we were able to parallelize critical sections of our computer
vision pipeline and achieve a 50-70% speed improvement
when simultaneously tracking 20 faces. These results suggest
that significant performance boosts are possible by
rethinking many existing computer vision algorithms that
have traditionally been presented in terms of serial (single
core) processing.

ACKNOWLEDGMENT
The authors would like to thank Phil Hubert, Umesh

Patel, Haroon Mirza, Faizal Javer, and Bill Colson for their
contributions to the AIM View project. This research was
supported by the Intelligent Systems Group (Personal
Solutions Division) at Intel Corporation.

Figure 10. Median face tracking times in milliseconds

for 5 and 20 faces at 640x480 and 1440x1080 resolution.

Figure 11. Face detection percentage time improvement

vs. number of faces (for different frame resolutions).

Figure 12. Face tracking percentage time improvement

vs. number of faces (for different frame resolutions).

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

640x480 1440x1080 640x480 1440x1080

5 faces 20 faces

CP
U

 T
im

e
in

 M
ill

is
ec

on
d

Serial Parallel

0

10

20

30

40

50

60

70

80

5 Faces 8 Faces 16 Faces 20 Faces

%
 D

et
ec

ti
on

 Im
pr

ov
em

t f
or

 P
ar

al
le

l

640x480 960x720 1440x1080

0

10

20

30

40

50

60

70

80

5 Faces 8 Faces 16 Faces 20 Faces

%
 T

ra
ck

in
g

Im
pr

ov
em

en
t f

or
 P

ar
al

le
l

640x480 960x720 1440x1080

296

REFERENCES
[1] J. Cho, B. Benson, S. Mirzaei, R. Kastner, “Parallelized Architecture

of Multiple Classifiers for Face Detection,” Proc. IEEE International
Conference on Application-specific Systems, Architectures, and
Processors, 2009, pp. 75-82.

[2] F. Crow, “Summed Area Tables for Texture Mapping,” Proc.
SIGGRAPH, 1984, Volume 18, Number 3, pp. 207-212.

[3] R. Cutler, Y. Rui, A. Gupta, J. J. Cadiz, I. Tashev, L. He, A. Colburn,
Z. Zhang, Z. Liu, S. Silverberg, “Distributed meetings: a meeting
capture and broadcasting system”, Proc. ACM Multimedia, 2002, pp.
503-512.

[4] J. Davis, “Recognizing Movement Using Motion Histograms,” MIT
Media Lab Technical Report #487, March 1999.

[5] N. Farrugia, F. Mamalet, S. Roux, F. Yang, M. Paindavoine, “Fast
and Robust Face Detection on a Parallel Optimized Architecture
Implemented on FPGA,” IEEE Transactions on Circuits and Systems
for Video Technology, 2009, Volume 19, pp. 597-602.

[6] D. Hefenbrock, J. Oberg, N. Nguyen, R. Kastner, S. Baden,
“Accelerating Viola-Jones Face Detection to FPGA-Level Using
GPUs,” Proc. IEEE International Symposium on Field Programmable
Custome Computing Machines, 2010, pp. 11-18.

[7] Intel Integrated Performance Primitives (IPP) Library, Available
online at: http://www.intel.com/software/products/ipp

[8] Intel Threading Building Blocks (TBB) Library, Available online at:
http://www.threadingbuildingblocks.org

[9] Intel VTune Performance Profiler (VTune), Available online at
http://www.intel.com/software/products/vtune

[10] R. Lienhart, L. Liang, A. Kuranov, “A Detector Tree of Boosted
Classifiers for Real-time Object Detection and Tracking,” Proc. IEEE
International Conference on Multimedia and Expo (ICME), July
2003, Volume 2, pp. 277-280.

[11] B. Lucas, T. Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision,” Proc. International Joint
Conference on Artifical Intelligence, pp. 674-679.

[12] Open Source Computer Vision Library (OpenCV), Available online
at: http://sourceforge.net/projects/opencvlibrary

[13] E. Osuna, R. Freund, F. Girosi, “Training Support Vector Machines:
An Application to Face Detection,” Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 1997, pp. 130-
136.

[14] C. Papageorgiou, M. Oren, T. Poggio, “A General Framework for
Object Detection,” Proc. International Conference on Computer
Vision (ICCV), Jan. 1998, pp. 555-562.

[15] A. Ranjan, R. Henrikson, J. Birnholtz, R. Balakrishnan, D. Lee,
“Automatic Camera Control Using Unobtrusive Vision and Audio
Tracking,” Proc. Graphics Interface (GI), 2010, pp. 47-54.

[16] H. Ren, M. Che, “A Multi-Core Architecture for Face Detection,”
Proc. IEEE International Conference on Multimedia Technology
(ICMT), July 2011, pp. 3354-3357.

[17] H. Rowley, S. Baluja, T. Kanade, “Neural Network-Based Face
Detection,” IEEE Pattern Analysis and Machine Intelligence (PAMI),
Jan. 1998, Volume 20, pp. 22-38.

[18] H. Schneiderman, T. Kanade, “A Statistical Method for 3D Object
Detection Applied to Faces and Cars”, Proc. International Conference
on Computer Vision (ICCV), June 2000, pp. 746-751.

[19] M. Turk, A. Pentland, “Face Recognition Using Eigenfaces,” Proc.
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 1991, pp. 586-591.

[20] P. Viola, M. Jones, “Rapid Object Detection Using a Boosted
Cascade of Simple Features,” Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2001, Volume 1, pp. 511-
518.

[21] M-H. Yang, D. Kriegman, N. Ahuja, “Detecting Faces in Images: A
Survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), Jan. 2002, Volume 24, pp. 34-58.

297

