
 1

Hand-Printed Character Recognizer using Neural Networks

95.407A Project
By: Shahzad Malik (219762)

Thursday, April 27, 2000

 2

Table of Contents

1 Introduction 3

2 Feedforward Backpropagation Network 4

3 Results 6
 3.1 Data Table 6
 3.2 Discussion 7

4 Conclusion 8

5 References 9

 3

1 Introduction

With the recent popularity of small, hand-held personal digital assistants (PDAs),
the commercial need for accurate hand-printed character recognition technology
has exploded. Clearly, attaching a keyboard to a pocket-sized device is not
feasible, and devices such as the PalmPilot make use of an input device that
resembles a pen (which is immediately intuitive to almost any user). Thus if a
user could use this pen-based device to draw alphanumeric characters on the
screen in a similar fashion to writing on a piece of paper, the need for a keyboard
or numerous buttons could be completely eliminated.

The process of recognizing such handwriting from pixel information falls into a
field of artificial intelligence called pattern or image recognition. Lots of work has
been done in this field recently, and most techniques for pattern and image
classification make use of neural networks. This project implements such a
neural network in order to “learn” to recognize general features of hand-printed
characters. The trained network can then be fed new inputs, which it then
attempts to recognize and categorize properly (see Figure 1).

 4

2 Feedforward Backpropagation Network

Typical pattern recognition systems are designed using two passes. The first
pass is a feature extractor that finds features within the data which are specific to
the task being solved (eg. finding bars of pixels within an image for character
recognition). The second pass is the classifier, which is more general purpose
and can be trained using a neural network and sample data sets. Clearly, the
feature extractor typically requires the most design effort, since it usually must be
hand-crafted based on what the application is trying to achieve.

One of the main contributions of neural networks to pattern recognition has been
to provide an alternative to this design: properly designed multi-layer networks
can learn complex mappings in high-dimensional spaces without requiring
complicated hand-crafted feature extractors [LECU1995b].

Thus, rather than building complex feature detection algorithms, this project
focuses on implementing a standard backpropagation neural network, which is
fully connected. Figure 2 shows the typical layout of such a network as it relates
to our task of classifying character images.

The idea behind this network is to map input vectors (in our case, pixels) to
output vectors (in our case, ASCII characters). The process by which this
mapping occurs is by assigning weights to each of the edges in Figure 2. These
weights can initially be set to random values, and the neural network will
automatically make adjustments to them based on a set of training data. This is
the process of the feedforward backpropagation mechanism. Known inputs are
fed into the neurons at the input layer, which are then activated and pass the
activation information to the hidden layers, which pass their activations to other
optional hidden layers, and then ultimately the output layer. At this point, the
resulting output at the output layer is compared to the desired output. The

 5

amount of error at each neuron is then propagated backwards through the
network, whereby adjustments to the weights are made accordingly.

Each pixel in the input image is first normalized into a greyscale colour value
between 0 and 1, where 0 means a fully white pixel, and 1 means a fully black
pixel. Assuming RGB pixels, where each component is between 0 and 255:

pixel_input = 1.0 – (((R + G + B) / 3.0) / 255.0)

Now assuming that the network has been fully connected and initialized with
random weights, each of the [0,1] pixels are fed into their own input neuron. So
for the 2x2 image in Figure 2, we have 4 neurons. Thus for an nxn image, we
will need nxn neurons.

The network in Figure 2 is a 3 layer configuration, with the required input and
output layers, as well as a single hidden layer. [RAO1993] mentions that
choosing the number of hidden layers is a difficult task with no hard rules or
guidelines. However, the size of a hidden layer is related to the features or
distinguishing characteristics that are to be discerned from the data [RAO1993].
The network in Figure 2 has 2 neurons in the hidden layer, which was chosen
arbitrarily to keep the diagram simple. The number of hidden layers and their
sizes will be experimented with in the implementation, and discussed in the
Results section.

The output layer is where the output vector can be retrieved. Each neuron in this
layer outputs a value between 0 and 1, which is guaranteed by the use of a
sigmoid function when calculating each neuron’s output [RAO1993]:

1.0 / (1.0 + e-x)
where x is the value to be “squashed”.

In order to train the network, a training set consisting of correct pairs of input and
output vectors are chosen. For example, in Figure 2 we could have the pairs:

Pair 1: { (1,0,0,0), (0,0,0) }
Pair 2: { (1,0,1,0), (0,0,1) }
Pair 3: { (1,1,1,0), (0,1,0) }

where the first vector consists of the input pixels, and the second vector is a
binary representation of the desired ASCII character.

If the full 256 ASCII codes aren’t needed, a conversion table could be easily
created. So for the above codes we could have:

(0,0,0) = A
(0,0,1) = B
(0,1,0) = C

Since the output neurons can give a value between 0 and 1, we can achieve
these crisp values by simply rounding the values to the nearest integer.

 6

3 Results

This section shows some implementation results. The training variables involved
in the tests were: the number of cycles, the size of the hidden layer, and the
learning parameter (which is a factor used during weight adjustment). The data
set consisted of 20 handwritten digits of size 24x32 pixels, with the numbers from
0 to 9. Thus the input layer consisted of 768 neurons, and the output layer 4
neurons (since 4 bits can represent the 10 possible digits). Ideally, we’d like our
training data to consist of thousands of samples, but this not feasible since this
data was created from scratch. The testing and training split used is 50%.

Note: While the implementation supports multiple hidden layers, the following test
results only make use of one hidden layer. Instead, the test runs modified the
size of the hidden layer, since this is what affects feature detection [RAO1993].

3.1 Data Table:

Cycles Hidden Layer

Size
Learning

Parameter
Training Accuracy

(%)
Testing Accuracy

(%)
100 3 0.1 50 32
100 3 0.25 68 48
100 3 0.5 10 10
100 6 0.1 71 46
100 6 0.25 50 47
100 6 0.5 40 36
100 12 0.1 100 61
100 12 0.25 49 36
100 12 0.5 55 42
100 24 0.1 100 43
100 24 0.25 100 67
100 24 0.5 34 25
1000 3 0.1 59 45
1000 3 0.25 20 18
1000 3 0.5 20 18
1000 6 0.1 100 64
1000 6 0.25 46 34
1000 6 0.5 10 10
1000 12 0.1 100 66
1000 12 0.25 21 19
1000 12 0.5 27 28
1000 24 0.1 100 74
1000 24 0.25 39 36
1000 24 0.5 52 35

 7

3.2 Discussion:

From the results in Section 3.1, the following observations are made:
- A small number of neurons in the hidden layer (eg. 3) is insufficient to extract

key features in the hand-drawn digits. In all cases with 3 neurons in the
middle, both the training and testing accuracy fared poorly.

- A large number of neurons in the middle layer help the accuracy, however
there is probably some upper limit to this which is dependent on the data
being used. Additionally, high neuron counts in the hidden layers increase
training time significantly.

- A low learning parameter causes the network to learn quite slowly, but helps
the network converge to a solution quite well. However, too low learning
parameters could increase the chances of reaching local minimums rather
than global minimums.

- A high learning parameter seems to seriously affect the accuracy of the test
classification, since the weights and objective function end up diverging (ie.
no learning occurs [SARL2000])

- Accuracy is increased by increasing the number of cycles.

 8

4 Conclusion

The backpropagation neural network discussed and implemented in this project
can also be used for almost any general image recognition applications such as
face detection and fingerprint detection. While the implementation of the fully-
connected backpropagation network gave reasonable results toward recognizing
hand-printed characters, it has some major deficiencies. The most notable is the
fact that it cannot handle major variations in translation, rotation, or scale. While
a few simple pre-processing steps can be implemented in order to account for
these variances, in general they are difficult to solve completely [LECU1995a].
Additionally, fully-connected networks completely ignore the general topology of
the input image, and instead rely on almost pixel-perfect feature detection.

One possible improvement to the network involve using localized connections
between the hidden layers. [LECU1995a] discusses Convolutional Networks as
such an alternative. These networks are a simple variation of backpropagation
networks, whereby connections between hidden layers are localized to a group
of pixels (rather than fully connected). This allows the first few hidden layers to
become local feature detectors, thus eliminating translational variances.
Additionally edges, end-points, and corners can be extracted automatically by the
network.

 9

5 References

[LECU1995a] LeCun, Y., Bengio, Y. Convolutional Networks for Images, Speech, and Time-

Series. http://www.research.att.com/~yann/

[LECU1995b] LeCun, Y., Bengio, Y. Pattern Recognition and Neural Networks.
http://www.research.att.com/~yann/

[RAO1993] Rao, V., Rao, H. Neural Networks and Fuzzy Logic. MIS Press, New York,
1995

[SARL2000] Sarle, W. Neural Networks FAQ. Newsgroup: comp.ai.neural-nets

